mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-15 08:08:09 +08:00
147 lines
4.8 KiB
Python
147 lines
4.8 KiB
Python
# coding=utf-8
|
|
# Implements user interface in browser for fine-tuned models.
|
|
# Usage: python web_demo.py --model_name_or_path path_to_model --checkpoint_dir path_to_checkpoint
|
|
|
|
|
|
import mdtex2html
|
|
import gradio as gr
|
|
|
|
from threading import Thread
|
|
from utils import (
|
|
Template,
|
|
load_pretrained,
|
|
prepare_infer_args,
|
|
get_logits_processor
|
|
)
|
|
|
|
from transformers import TextIteratorStreamer
|
|
from transformers.utils.versions import require_version
|
|
|
|
|
|
require_version("gradio>=3.30.0", "To fix: pip install gradio>=3.30.0")
|
|
|
|
|
|
model_args, data_args, finetuning_args, generating_args = prepare_infer_args()
|
|
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
|
|
|
prompt_template = Template(data_args.prompt_template)
|
|
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
|
|
|
|
|
def postprocess(self, y):
|
|
r"""
|
|
Overrides Chatbot.postprocess
|
|
"""
|
|
if y is None:
|
|
return []
|
|
for i, (message, response) in enumerate(y):
|
|
y[i] = (
|
|
None if message is None else mdtex2html.convert((message)),
|
|
None if response is None else mdtex2html.convert(response),
|
|
)
|
|
return y
|
|
|
|
|
|
gr.Chatbot.postprocess = postprocess
|
|
|
|
|
|
def parse_text(text): # copy from https://github.com/GaiZhenbiao/ChuanhuChatGPT
|
|
lines = text.split("\n")
|
|
lines = [line for line in lines if line != ""]
|
|
count = 0
|
|
for i, line in enumerate(lines):
|
|
if "```" in line:
|
|
count += 1
|
|
items = line.split("`")
|
|
if count % 2 == 1:
|
|
lines[i] = "<pre><code class=\"language-{}\">".format(items[-1])
|
|
else:
|
|
lines[i] = "<br /></code></pre>"
|
|
else:
|
|
if i > 0:
|
|
if count % 2 == 1:
|
|
line = line.replace("`", "\`")
|
|
line = line.replace("<", "<")
|
|
line = line.replace(">", ">")
|
|
line = line.replace(" ", " ")
|
|
line = line.replace("*", "*")
|
|
line = line.replace("_", "_")
|
|
line = line.replace("-", "-")
|
|
line = line.replace(".", ".")
|
|
line = line.replace("!", "!")
|
|
line = line.replace("(", "(")
|
|
line = line.replace(")", ")")
|
|
line = line.replace("$", "$")
|
|
lines[i] = "<br />" + line
|
|
text = "".join(lines)
|
|
return text
|
|
|
|
|
|
def predict(query, chatbot, max_length, top_p, temperature, history):
|
|
chatbot.append((parse_text(query), ""))
|
|
|
|
input_ids = tokenizer([prompt_template.get_prompt(query, history)], return_tensors="pt")["input_ids"]
|
|
input_ids = input_ids.to(model.device)
|
|
gen_kwargs = {
|
|
"input_ids": input_ids,
|
|
"do_sample": True,
|
|
"top_p": top_p,
|
|
"temperature": temperature,
|
|
"num_beams": generating_args.infer_num_beams,
|
|
"max_length": max_length,
|
|
"repetition_penalty": generating_args.repetition_penalty,
|
|
"logits_processor": get_logits_processor(),
|
|
"streamer": streamer
|
|
}
|
|
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
|
thread.start()
|
|
response = ""
|
|
for new_text in streamer:
|
|
response += new_text
|
|
new_history = history + [(query, response)]
|
|
chatbot[-1] = (parse_text(query), parse_text(response))
|
|
yield chatbot, new_history
|
|
|
|
|
|
def reset_user_input():
|
|
return gr.update(value="")
|
|
|
|
|
|
def reset_state():
|
|
return [], []
|
|
|
|
|
|
with gr.Blocks() as demo:
|
|
|
|
gr.HTML("""
|
|
<h1 align="center">
|
|
<a href="https://github.com/hiyouga/LLaMA-Efficient-Tuning" target="_blank">
|
|
LLaMA Efficient Tuning
|
|
</a>
|
|
</h1>
|
|
""")
|
|
|
|
chatbot = gr.Chatbot()
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=4):
|
|
with gr.Column(scale=12):
|
|
user_input = gr.Textbox(show_label=False, placeholder="Input...", lines=10).style(container=False)
|
|
with gr.Column(min_width=32, scale=1):
|
|
submitBtn = gr.Button("Submit", variant="primary")
|
|
|
|
with gr.Column(scale=1):
|
|
emptyBtn = gr.Button("Clear History")
|
|
max_length = gr.Slider(0, 2048, value=1024, step=1.0, label="Maximum length", interactive=True)
|
|
top_p = gr.Slider(0, 1, value=generating_args.top_p, step=0.01, label="Top P", interactive=True)
|
|
temperature = gr.Slider(0, 1.5, value=generating_args.temperature, step=0.01, label="Temperature", interactive=True)
|
|
|
|
history = gr.State([])
|
|
|
|
submitBtn.click(predict, [user_input, chatbot, max_length, top_p, temperature, history], [chatbot, history], show_progress=True)
|
|
submitBtn.click(reset_user_input, [], [user_input])
|
|
|
|
emptyBtn.click(reset_state, outputs=[chatbot, history], show_progress=True)
|
|
|
|
demo.queue().launch(server_name="0.0.0.0", share=True, inbrowser=True)
|