mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 19:52:50 +08:00
221 lines
9.2 KiB
Python
221 lines
9.2 KiB
Python
import uuid
|
|
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence, Union
|
|
|
|
from ..data import get_template_and_fix_tokenizer
|
|
from ..extras.constants import IMAGE_TOKEN
|
|
from ..extras.logging import get_logger
|
|
from ..extras.misc import get_device_count, infer_optim_dtype
|
|
from ..extras.packages import is_vllm_available
|
|
from ..model import load_config, load_tokenizer
|
|
from ..model.utils.visual import LlavaMultiModalProjectorForYiVLForVLLM
|
|
from .base_engine import BaseEngine, Response
|
|
|
|
|
|
if is_vllm_available():
|
|
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
|
|
from vllm.lora.request import LoRARequest
|
|
from vllm.sequence import MultiModalData
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from numpy.typing import NDArray
|
|
from transformers.image_processing_utils import BaseImageProcessor
|
|
|
|
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class VllmEngine(BaseEngine):
|
|
def __init__(
|
|
self,
|
|
model_args: "ModelArguments",
|
|
data_args: "DataArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
generating_args: "GeneratingArguments",
|
|
) -> None:
|
|
config = load_config(model_args) # may download model from ms hub
|
|
infer_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
|
|
infer_dtype = str(infer_dtype).split(".")[-1]
|
|
|
|
self.can_generate = finetuning_args.stage == "sft"
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
self.tokenizer = tokenizer_module["tokenizer"]
|
|
self.processor = tokenizer_module["processor"]
|
|
self.tokenizer.padding_side = "left"
|
|
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
|
|
self.generating_args = generating_args.to_dict()
|
|
|
|
engine_args = {
|
|
"model": model_args.model_name_or_path,
|
|
"trust_remote_code": True,
|
|
"download_dir": model_args.cache_dir,
|
|
"dtype": infer_dtype,
|
|
"max_model_len": model_args.vllm_maxlen,
|
|
"tensor_parallel_size": get_device_count() or 1,
|
|
"gpu_memory_utilization": model_args.vllm_gpu_util,
|
|
"disable_log_stats": True,
|
|
"disable_log_requests": True,
|
|
"enforce_eager": model_args.vllm_enforce_eager,
|
|
"enable_lora": model_args.adapter_name_or_path is not None,
|
|
"max_lora_rank": model_args.vllm_max_lora_rank,
|
|
}
|
|
|
|
if model_args.visual_inputs:
|
|
image_size = config.vision_config.image_size
|
|
patch_size = config.vision_config.patch_size
|
|
self.image_feature_size = (image_size // patch_size) ** 2
|
|
engine_args["image_input_type"] = "pixel_values"
|
|
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
|
|
engine_args["image_input_shape"] = "1,3,{},{}".format(image_size, image_size)
|
|
engine_args["image_feature_size"] = self.image_feature_size
|
|
if getattr(config, "is_yi_vl_derived_model", None):
|
|
# bug in vllm 0.4.2, see: https://github.com/vllm-project/vllm/pull/4828
|
|
import vllm.model_executor.models.llava
|
|
|
|
logger.info("Detected Yi-VL model, applying projector patch.")
|
|
vllm.model_executor.models.llava.LlavaMultiModalProjector = LlavaMultiModalProjectorForYiVLForVLLM
|
|
|
|
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
|
|
if model_args.adapter_name_or_path is not None:
|
|
self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
|
else:
|
|
self.lora_request = None
|
|
|
|
async def _generate(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
**input_kwargs,
|
|
) -> AsyncIterator["RequestOutput"]:
|
|
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
|
|
|
|
if (
|
|
self.processor is not None
|
|
and image is not None
|
|
and not hasattr(self.processor, "image_seq_length")
|
|
and IMAGE_TOKEN not in messages[0]["content"]
|
|
): # llava case
|
|
messages[0]["content"] = IMAGE_TOKEN * self.image_feature_size + messages[0]["content"]
|
|
|
|
paired_messages = messages + [{"role": "assistant", "content": ""}]
|
|
system = system or self.generating_args["default_system"]
|
|
prompt_ids, _ = self.template.encode_oneturn(
|
|
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
|
|
)
|
|
|
|
if self.processor is not None and image is not None: # add image features
|
|
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
|
|
pixel_values = image_processor(image, return_tensors="pt")["pixel_values"]
|
|
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
|
|
else:
|
|
multi_modal_data = None
|
|
|
|
prompt_length = len(prompt_ids)
|
|
|
|
use_beam_search: bool = self.generating_args["num_beams"] > 1
|
|
temperature: Optional[float] = input_kwargs.pop("temperature", None)
|
|
top_p: Optional[float] = input_kwargs.pop("top_p", None)
|
|
top_k: Optional[float] = input_kwargs.pop("top_k", None)
|
|
num_return_sequences: int = input_kwargs.pop("num_return_sequences", 1)
|
|
repetition_penalty: Optional[float] = input_kwargs.pop("repetition_penalty", None)
|
|
length_penalty: Optional[float] = input_kwargs.pop("length_penalty", None)
|
|
max_length: Optional[int] = input_kwargs.pop("max_length", None)
|
|
max_new_tokens: Optional[int] = input_kwargs.pop("max_new_tokens", None)
|
|
stop: Optional[Union[str, List[str]]] = input_kwargs.pop("stop", None)
|
|
|
|
if "max_new_tokens" in self.generating_args:
|
|
max_tokens = self.generating_args["max_new_tokens"]
|
|
elif "max_length" in self.generating_args:
|
|
if self.generating_args["max_length"] > prompt_length:
|
|
max_tokens = self.generating_args["max_length"] - prompt_length
|
|
else:
|
|
max_tokens = 1
|
|
|
|
if max_length:
|
|
max_tokens = max_length - prompt_length if max_length > prompt_length else 1
|
|
|
|
if max_new_tokens:
|
|
max_tokens = max_new_tokens
|
|
|
|
sampling_params = SamplingParams(
|
|
n=num_return_sequences,
|
|
repetition_penalty=(
|
|
repetition_penalty if repetition_penalty is not None else self.generating_args["repetition_penalty"]
|
|
)
|
|
or 1.0, # repetition_penalty must > 0
|
|
temperature=temperature if temperature is not None else self.generating_args["temperature"],
|
|
top_p=(top_p if top_p is not None else self.generating_args["top_p"]) or 1.0, # top_p must > 0
|
|
top_k=top_k if top_k is not None else self.generating_args["top_k"],
|
|
use_beam_search=use_beam_search,
|
|
length_penalty=length_penalty if length_penalty is not None else self.generating_args["length_penalty"],
|
|
stop=stop,
|
|
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
|
|
max_tokens=max_tokens,
|
|
skip_special_tokens=True,
|
|
)
|
|
|
|
result_generator = self.model.generate(
|
|
prompt=None,
|
|
sampling_params=sampling_params,
|
|
request_id=request_id,
|
|
prompt_token_ids=prompt_ids,
|
|
lora_request=self.lora_request,
|
|
multi_modal_data=multi_modal_data,
|
|
)
|
|
return result_generator
|
|
|
|
async def start(self) -> None:
|
|
pass
|
|
|
|
async def chat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
**input_kwargs,
|
|
) -> List["Response"]:
|
|
final_output = None
|
|
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
|
async for request_output in generator:
|
|
final_output = request_output
|
|
|
|
results = []
|
|
for output in final_output.outputs:
|
|
results.append(
|
|
Response(
|
|
response_text=output.text,
|
|
response_length=len(output.token_ids),
|
|
prompt_length=len(final_output.prompt_token_ids),
|
|
finish_reason=output.finish_reason,
|
|
)
|
|
)
|
|
|
|
return results
|
|
|
|
async def stream_chat(
|
|
self,
|
|
messages: Sequence[Dict[str, str]],
|
|
system: Optional[str] = None,
|
|
tools: Optional[str] = None,
|
|
image: Optional["NDArray"] = None,
|
|
**input_kwargs,
|
|
) -> AsyncGenerator[str, None]:
|
|
generated_text = ""
|
|
generator = await self._generate(messages, system, tools, image, **input_kwargs)
|
|
async for result in generator:
|
|
delta_text = result.outputs[0].text[len(generated_text) :]
|
|
generated_text = result.outputs[0].text
|
|
yield delta_text
|
|
|
|
async def get_scores(
|
|
self,
|
|
batch_input: List[str],
|
|
**input_kwargs,
|
|
) -> List[float]:
|
|
raise NotImplementedError("vLLM engine does not support get_scores.")
|