mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-16 00:28:10 +08:00
89 lines
3.0 KiB
Python
89 lines
3.0 KiB
Python
# coding=utf-8
|
||
# Implements stream chat in command line for fine-tuned models.
|
||
# Usage: python cli_demo.py --checkpoint_dir path_to_checkpoint
|
||
|
||
|
||
from utils import (
|
||
load_pretrained,
|
||
prepare_infer_args,
|
||
get_logits_processor
|
||
)
|
||
from threading import Thread
|
||
from transformers import TextIteratorStreamer
|
||
|
||
|
||
def main():
|
||
|
||
model_args, data_args, finetuning_args = prepare_infer_args()
|
||
model_name = "BLOOM" if "bloom" in model_args.model_name_or_path else "LLaMA"
|
||
model, tokenizer = load_pretrained(model_args, finetuning_args)
|
||
|
||
def format_example_alpaca(query, history):
|
||
prompt = "Below is an instruction that describes a task. "
|
||
prompt += "Write a response that appropriately completes the request.\n"
|
||
prompt += "Instruction:\n"
|
||
for old_query, response in history:
|
||
prompt += "Human: {}\nAssistant: {}\n".format(old_query, response)
|
||
prompt += "Human: {}\nAssistant:".format(query)
|
||
return prompt
|
||
|
||
def format_example_ziya(query, history):
|
||
prompt = ""
|
||
for old_query, response in history:
|
||
prompt += "<human>: {}\n<bot>: {}\n".format(old_query, response)
|
||
prompt += "<human>: {}\n<bot>:".format(query)
|
||
return prompt
|
||
|
||
format_example = format_example_alpaca if data_args.prompt_template == "alpaca" else format_example_ziya
|
||
streamer = TextIteratorStreamer(tokenizer, timeout=60.0, skip_prompt=True, skip_special_tokens=True)
|
||
|
||
def predict_and_print(query, history: list):
|
||
input_ids = tokenizer([format_example(query, history)], return_tensors="pt")["input_ids"]
|
||
input_ids = input_ids.to(model.device)
|
||
gen_kwargs = {
|
||
"input_ids": input_ids,
|
||
"do_sample": True,
|
||
"top_p": 0.7,
|
||
"temperature": 0.95,
|
||
"num_beams": 1,
|
||
"max_new_tokens": 512,
|
||
"repetition_penalty": 1.0,
|
||
"logits_processor": get_logits_processor(),
|
||
"streamer": streamer
|
||
}
|
||
thread = Thread(target=model.generate, kwargs=gen_kwargs)
|
||
thread.start()
|
||
response = ""
|
||
print("{}: ".format(model_name), end="")
|
||
for new_text in streamer:
|
||
print(new_text, end="", flush=True)
|
||
response += new_text
|
||
print()
|
||
history = history + [(query, response)]
|
||
return history
|
||
|
||
history = []
|
||
print("欢迎使用 {} 模型,输入内容即可对话,clear清空对话历史,stop终止程序".format(model_name))
|
||
while True:
|
||
try:
|
||
query = input("\nInput: ")
|
||
except UnicodeDecodeError:
|
||
print("Detected decoding error at the inputs, please set the terminal encoding to utf-8.")
|
||
continue
|
||
except Exception:
|
||
raise
|
||
|
||
if query.strip() == "stop":
|
||
break
|
||
|
||
if query.strip() == "clear":
|
||
history = []
|
||
print("History has been removed.")
|
||
continue
|
||
|
||
history = predict_and_print(query, history)
|
||
|
||
|
||
if __name__ == "__main__":
|
||
main()
|