mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
52 lines
1.9 KiB
Python
52 lines
1.9 KiB
Python
from typing import Any, Dict, Optional
|
|
from dataclasses import asdict, dataclass, field
|
|
|
|
|
|
@dataclass
|
|
class GeneratingArguments:
|
|
r"""
|
|
Arguments pertaining to specify the decoding parameters.
|
|
"""
|
|
do_sample: Optional[bool] = field(
|
|
default=True,
|
|
metadata={"help": "Whether or not to use sampling, use greedy decoding otherwise."}
|
|
)
|
|
temperature: Optional[float] = field(
|
|
default=0.95,
|
|
metadata={"help": "The value used to modulate the next token probabilities."}
|
|
)
|
|
top_p: Optional[float] = field(
|
|
default=0.7,
|
|
metadata={"help": "The smallest set of most probable tokens with probabilities that add up to top_p or higher are kept."}
|
|
)
|
|
top_k: Optional[int] = field(
|
|
default=50,
|
|
metadata={"help": "The number of highest probability vocabulary tokens to keep for top-k filtering."}
|
|
)
|
|
num_beams: Optional[int] = field(
|
|
default=1,
|
|
metadata={"help": "Number of beams for beam search. 1 means no beam search."}
|
|
)
|
|
max_length: Optional[int] = field(
|
|
default=None,
|
|
metadata={"help": "The maximum length the generated tokens can have. It can be overridden by max_new_tokens."}
|
|
)
|
|
max_new_tokens: Optional[int] = field(
|
|
default=512,
|
|
metadata={"help": "The maximum numbers of tokens to generate, ignoring the number of tokens in the prompt."}
|
|
)
|
|
repetition_penalty: Optional[float] = field(
|
|
default=1.0,
|
|
metadata={"help": "The parameter for repetition penalty. 1.0 means no penalty."}
|
|
)
|
|
length_penalty: Optional[float] = field(
|
|
default=1.0,
|
|
metadata={"help": "Exponential penalty to the length that is used with beam-based generation."}
|
|
)
|
|
|
|
def to_dict(self) -> Dict[str, Any]:
|
|
args = asdict(self)
|
|
if args.get("max_new_tokens", None):
|
|
args.pop("max_length", None)
|
|
return args
|