mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-05 05:02:50 +08:00
50 lines
2.0 KiB
Python
50 lines
2.0 KiB
Python
from typing import TYPE_CHECKING, Any, Dict, List, Optional
|
|
|
|
from llmtuner.extras.callbacks import LogCallback
|
|
from llmtuner.extras.logging import get_logger
|
|
from llmtuner.tuner.core import get_train_args, load_model_and_tokenizer
|
|
from llmtuner.tuner.pt import run_pt
|
|
from llmtuner.tuner.sft import run_sft
|
|
from llmtuner.tuner.rm import run_rm
|
|
from llmtuner.tuner.ppo import run_ppo
|
|
from llmtuner.tuner.dpo import run_dpo
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import TrainerCallback
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def run_exp(args: Optional[Dict[str, Any]] = None, callbacks: Optional[List["TrainerCallback"]] = None):
|
|
model_args, data_args, training_args, finetuning_args, generating_args, general_args = get_train_args(args)
|
|
callbacks = [LogCallback()] if callbacks is None else callbacks
|
|
|
|
if general_args.stage == "pt":
|
|
run_pt(model_args, data_args, training_args, finetuning_args, callbacks)
|
|
elif general_args.stage == "sft":
|
|
run_sft(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
|
elif general_args.stage == "rm":
|
|
run_rm(model_args, data_args, training_args, finetuning_args, callbacks)
|
|
elif general_args.stage == "ppo":
|
|
run_ppo(model_args, data_args, training_args, finetuning_args, generating_args, callbacks)
|
|
elif general_args.stage == "dpo":
|
|
run_dpo(model_args, data_args, training_args, finetuning_args, callbacks)
|
|
else:
|
|
raise ValueError("Unknown task.")
|
|
|
|
|
|
def export_model(args: Optional[Dict[str, Any]] = None, max_shard_size: Optional[str] = "10GB"):
|
|
model_args, _, training_args, finetuning_args, _, _ = get_train_args(args)
|
|
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args)
|
|
tokenizer.padding_side = "left" # restore padding side
|
|
model.save_pretrained(training_args.output_dir, max_shard_size=max_shard_size)
|
|
try:
|
|
tokenizer.save_pretrained(training_args.output_dir)
|
|
except:
|
|
logger.warning("Cannot save tokenizer, please copy the files manually.")
|
|
|
|
|
|
if __name__ == "__main__":
|
|
run_exp()
|