mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-25 07:12:50 +08:00
85 lines
3.0 KiB
Python
85 lines
3.0 KiB
Python
from functools import partial
|
|
from typing import TYPE_CHECKING, Callable, Literal, Optional, Tuple
|
|
|
|
from .processors.feedback import preprocess_feedback_dataset
|
|
from .processors.pairwise import preprocess_pairwise_dataset, print_pairwise_dataset_example
|
|
from .processors.pretrain import preprocess_pretrain_dataset
|
|
from .processors.supervised import (
|
|
preprocess_packed_supervised_dataset,
|
|
preprocess_supervised_dataset,
|
|
print_supervised_dataset_example,
|
|
)
|
|
from .processors.unsupervised import preprocess_unsupervised_dataset, print_unsupervised_dataset_example
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import ProcessorMixin, Seq2SeqTrainingArguments
|
|
from transformers.tokenization_utils import PreTrainedTokenizer
|
|
|
|
from ..hparams import DataArguments
|
|
from .template import Template
|
|
|
|
|
|
def get_preprocess_and_print_func(
|
|
data_args: "DataArguments",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
stage: Literal["pt", "sft", "rm", "kto"],
|
|
template: "Template",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
processor: Optional["ProcessorMixin"],
|
|
) -> Tuple[Callable, Callable]:
|
|
if stage == "pt":
|
|
preprocess_func = partial(
|
|
preprocess_pretrain_dataset,
|
|
tokenizer=tokenizer,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
|
elif stage == "sft" and not training_args.predict_with_generate:
|
|
if data_args.packing:
|
|
preprocess_func = partial(
|
|
preprocess_packed_supervised_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
data_args=data_args,
|
|
)
|
|
else:
|
|
preprocess_func = partial(
|
|
preprocess_supervised_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
|
|
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
|
elif stage == "rm":
|
|
preprocess_func = partial(
|
|
preprocess_pairwise_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
|
|
elif stage == "kto":
|
|
preprocess_func = partial(
|
|
preprocess_feedback_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
|
else:
|
|
preprocess_func = partial(
|
|
preprocess_unsupervised_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
|
|
|
return preprocess_func, print_function
|