LLaMA-Factory/tests/auto_gptq.py
hiyouga 2537481c34 add autogptq
Former-commit-id: 43321557c272862d9c6531fc48a4569cfc88e4e7
2023-07-02 20:36:37 +08:00

48 lines
1.9 KiB
Python

# coding=utf-8
# Quantizes fine-tuned models with AutoGPTQ (https://github.com/PanQiWei/AutoGPTQ).
# Usage: python auto_gptq.py --input_dir path_to_llama_model --output_dir path_to_quant_model --data_file alpaca.json
# dataset format: question (string), A (string), B (string), C (string), D (string), answer (Literal["A", "B", "C", "D"])
import fire
from datasets import load_dataset
from transformers import AutoTokenizer
from auto_gptq import AutoGPTQForCausalLM, BaseQuantizeConfig
def quantize(input_dir: str, output_dir: str, data_file: str):
tokenizer = AutoTokenizer.from_pretrained(input_dir, use_fast=False, padding_side="left")
def format_example(examples):
prefix=("A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions.")
texts = []
for i in range(len(examples["instruction"])):
prompt = prefix + "\n"
if "history" in examples:
for user_query, bot_resp in examples["history"][i]:
prompt += "Human: {}\nAssistant: {}\n".format(user_query, bot_resp)
prompt += "Human: {}\nAssistant: {}".format(examples["instruction"][i], examples["output"][i])
texts.append(prompt)
return tokenizer(texts, truncation=True, max_length=1024)
dataset = load_dataset("json", data_files=data_file)["train"]
column_names = list(dataset.column_names)
dataset = dataset.select(range(1024))
dataset = dataset.map(format_example, batched=True, remove_columns=column_names)
dataset = dataset.shuffle()
quantize_config = BaseQuantizeConfig(
bits=4,
group_size=128,
desc_act=False
)
model = AutoGPTQForCausalLM.from_pretrained(input_dir, quantize_config)
model.quantize(dataset)
model.save_quantized(output_dir)
if __name__ == "__main__":
fire.Fire(quantize)