hiyouga 21bf79e72b add defaults
Former-commit-id: d3844e97e387b2106a32a576a61318ecec948e23
2023-08-11 13:56:26 +08:00

521 lines
13 KiB
Python

import tiktoken
from dataclasses import dataclass
from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union
from llmtuner.extras.logging import get_logger
if TYPE_CHECKING:
from transformers import PreTrainedTokenizer
logger = get_logger(__name__)
@dataclass
class Template:
prefix: List[Union[str, Dict[str, str]]]
prompt: List[Union[str, Dict[str, str]]]
sep: List[Union[str, Dict[str, str]]]
stop_words: List[str]
use_history: bool
def encode_oneturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
) -> Tuple[List[int], List[int]]:
r"""
Returns a single pair of token ids representing prompt and response respectively.
"""
prefix, history = self._format(query, resp, history, prefix)
encoded_pairs = self._encode(tokenizer, prefix, history)
prompt_ids = []
for query_ids, resp_ids in encoded_pairs[:-1]:
prompt_ids = prompt_ids + query_ids + resp_ids
prompt_ids = prompt_ids + encoded_pairs[-1][0]
return prompt_ids, encoded_pairs[-1][1]
def encode_multiturn(
self,
tokenizer: "PreTrainedTokenizer",
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
) -> List[Tuple[List[int], List[int]]]:
r"""
Returns multiple pairs of token ids representing prompts and responses respectively.
"""
prefix, history = self._format(query, resp, history, prefix)
encoded_pairs = self._encode(tokenizer, prefix, history)
return encoded_pairs
def _format(
self,
query: str,
resp: str,
history: Optional[List[Tuple[str, str]]] = None,
prefix: Optional[str] = None
) -> Tuple[List[Union[str, Dict[str, str]]], List[Tuple[str, str]]]:
r"""
Aligns inputs to the standard format.
"""
prefix = [prefix] if prefix else self.prefix # use prefix if provided
history = history if (history and self.use_history) else []
history = history + [(query, resp)]
return prefix, history
def _get_special_ids(
self,
tokenizer: "PreTrainedTokenizer"
) -> Tuple[List[int], List[int]]:
if tokenizer.bos_token_id:
bos_ids = [tokenizer.bos_token_id]
else:
bos_ids = [] # bos token is optional
if tokenizer.eos_token_id:
eos_ids = [tokenizer.eos_token_id]
else:
raise ValueError("EOS token is required.")
return bos_ids, eos_ids
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
prefix: List[Union[str, Dict[str, str]]],
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: bos + prefix + sep + query resp + eos
Turn t: sep + bos + query resp + eos
"""
bos_ids, eos_ids = self._get_special_ids(tokenizer)
sep_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep)
encoded_pairs = []
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0:
if prefix: # has prefix
prefix_ids = bos_ids + self._convert_inputs_to_ids(tokenizer, context=prefix) + sep_ids
else:
prefix_ids = bos_ids
else:
prefix_ids = sep_ids + bos_ids
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query, idx=str(turn_idx))
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((prefix_ids + query_ids, resp_ids + eos_ids))
return encoded_pairs
def _convert_inputs_to_ids(
self,
tokenizer: "PreTrainedTokenizer",
context: List[Union[str, Dict[str, str]]],
query: Optional[str] = "",
idx: Optional[str] = ""
) -> List[int]:
r"""
Converts context to token ids.
"""
if isinstance(getattr(tokenizer, "tokenizer", None), tiktoken.Encoding): # for tiktoken tokenizer (Qwen)
kwargs = dict(allowed_special="all")
else:
kwargs = dict(add_special_tokens=False)
token_ids = []
for elem in context:
if isinstance(elem, str):
elem = elem.replace("{{query}}", query, 1)
elem = elem.replace("{{idx}}", idx, 1)
token_ids = token_ids + tokenizer.encode(elem, **kwargs)
elif isinstance(elem, dict):
token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))]
else:
raise NotImplementedError
return token_ids
@dataclass
class Llama2Template(Template):
def _encode(
self,
tokenizer: "PreTrainedTokenizer",
prefix: List[Union[str, Dict[str, str]]],
history: List[Tuple[str, str]]
) -> List[Tuple[List[int], List[int]]]:
r"""
Encodes formatted inputs to pairs of token ids.
Turn 0: bos + prefix + query resp + eos
Turn t: bos + query resp + eos
"""
bos_ids, eos_ids = self._get_special_ids(tokenizer)
encoded_pairs = []
assert isinstance(prefix[0], str), "LLaMA-2 template only accepts list containing a single string."
for turn_idx, (query, resp) in enumerate(history):
if turn_idx == 0: # llama2 template has not sep_ids
query = prefix[0] + query
query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query)
resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp])
encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids))
return encoded_pairs
templates: Dict[str, Template] = {}
def register_template(
name: str,
prefix: List[Union[str, Dict[str, str]]],
prompt: List[Union[str, Dict[str, str]]],
sep: List[Union[str, Dict[str, str]]],
stop_words: List[str],
use_history: bool
) -> None:
template_class = Llama2Template if name == "llama2" else Template
templates[name] = template_class(
prefix=prefix,
prompt=prompt,
sep=sep,
stop_words=stop_words,
use_history=use_history
)
def get_template_and_fix_tokenizer(
name: str,
tokenizer: "PreTrainedTokenizer"
) -> Template:
template = templates.get(name, None)
assert template is not None, "Template {} does not exist.".format(name)
if len(template.stop_words): # inplace method
tokenizer.eos_token = template.stop_words[0]
logger.info("Replace eos token: {}".format(tokenizer.eos_token))
if tokenizer.eos_token_id is None:
tokenizer.eos_token = "<|endoftext|>"
logger.info("Add eos token: {}".format(tokenizer.eos_token))
if tokenizer.pad_token_id is None:
tokenizer.pad_token = tokenizer.eos_token
logger.info("Add pad token: {}".format(tokenizer.pad_token))
tokenizer.add_special_tokens(dict(additional_special_tokens=template.stop_words))
return template
r"""
Supports language model inference without histories.
"""
register_template(
name="vanilla",
prefix=[],
prompt=[
"{{query}}"
],
sep=[],
stop_words=[],
use_history=False
)
r"""
Default template.
"""
register_template(
name="default",
prefix=[
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
],
prompt=[
"Human: {{query}}\nAssistant: "
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf
https://huggingface.co/meta-llama/Llama-2-13b-chat-hf
https://huggingface.co/meta-llama/Llama-2-70b-chat-hf
"""
register_template(
name="llama2",
prefix=[
"<<SYS>>\nYou are a helpful, respectful and honest assistant. "
"Always answer as helpfully as possible, while being safe. "
"Your answers should not include any harmful, unethical, "
"racist, sexist, toxic, dangerous, or illegal content. "
"Please ensure that your responses are socially unbiased and positive in nature.\n"
"If a question does not make any sense, or is not factually coherent, "
"explain why instead of answering something not correct. "
"If you don't know the answer to a question, please don't share false information.\n<</SYS>>\n\n"
],
prompt=[
"[INST] {{query}} [/INST] "
],
sep=[],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff
https://github.com/ymcui/Chinese-LLaMA-Alpaca
"""
register_template(
name="alpaca",
prefix=[
"Below is an instruction that describes a task. "
"Write a response that appropriately completes the request."
],
prompt=[
"### Instruction:\n{{query}}\n\n### Response:\n"
],
sep=[
"\n\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1
https://huggingface.co/lmsys/vicuna-13b-delta-v1.1
"""
register_template(
name="vicuna",
prefix=[
"A chat between a curious user and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the user's questions."
],
prompt=[
"USER: {{query}} ASSISTANT: "
],
sep=[],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B
"""
register_template(
name="belle",
prefix=[],
prompt=[
"Human: {{query}}\n\nBelle: "
],
sep=[
"\n\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://github.com/CVI-SZU/Linly
"""
register_template(
name="linly",
prefix=[],
prompt=[
"User: {{query}}\nBot: "
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://github.com/Neutralzz/BiLLa
"""
register_template(
name="billa",
prefix=[],
prompt=[
"Human: {{query}}\nAssistant: "
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1
"""
register_template(
name="ziya",
prefix=[],
prompt=[
{"token": "<human>"},
":{{query}}\n",
{"token": "<bot>"},
":"
],
sep=[
"\n"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/qhduan/aquilachat-7b
"""
register_template(
name="aquila",
prefix=[
"A chat between a curious human and an artificial intelligence assistant. "
"The assistant gives helpful, detailed, and polite answers to the human's questions."
],
prompt=[
"Human: {{query}}###Assistant: "
],
sep=[
"###"
],
stop_words=[],
use_history=True
)
r"""
Supports: https://huggingface.co/internlm/internlm-chat-7b
"""
register_template(
name="intern",
prefix=[],
prompt=[
"<|User|>:{{query}}",
{"token": "<eoh>"},
"\n<|Bot|>:"
],
sep=[
"\n"
],
stop_words=[
"<eoa>"
],
use_history=True
)
r"""
Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat
"""
register_template(
name="baichuan",
prefix=[
{"token": "<reserved_102>"} # user token (a little difference in the first turn)
],
prompt=[
"{{query}}",
{"token": "<reserved_103>"} # assistant token
],
sep=[],
stop_words=[
"<reserved_102>" # user token
],
use_history=True
)
r"""
Supports: https://huggingface.co/HuggingFaceH4/starchat-alpha
https://huggingface.co/HuggingFaceH4/starchat-beta
"""
register_template(
name="starchat",
prefix=[
{"token": "<|system|>"},
"\n",
{"token": "<|end|>"}
],
prompt=[
{"token": "<|user|>"},
"\n{{query}}",
{"token": "<|end|>"},
"\n",
{"token": "<|assistant|>"}
],
sep=[
"\n"
],
stop_words=[
"<|end|>"
],
use_history=True
)
r"""
Supports: https://huggingface.co/Qwen/Qwen-7B-Chat
"""
register_template(
name="chatml",
prefix=[
{"token": "<|im_start|>"},
"system\nYou are a helpful assistant.",
{"token": "<|im_end|>"}
],
prompt=[
{"token": "<|im_start|>"},
"user\n{{query}}",
{"token": "<|im_end|>"},
"\n",
{"token": "<|im_start|>"},
"assistant\n"
],
sep=[
"\n"
],
stop_words=[
"<|im_end|>"
],
use_history=True
)
r"""
Supports: https://huggingface.co/THUDM/chatglm2-6b
"""
register_template(
name="chatglm2",
prefix=[
{"token": "[gMASK]"},
{"token": "sop"}
],
prompt=[
"[Round {{idx}}]\n\n问:{{query}}\n\n答:"
],
sep=[
"\n\n"
],
stop_words=[],
use_history=True
)