mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-01 11:12:50 +08:00
* fix llamapro script * change year Former-commit-id: e2dc5b952aa22835d5220ba624f44676138b65ac
43 lines
1.4 KiB
Python
43 lines
1.4 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import TYPE_CHECKING
|
|
|
|
from ...extras.constants import MOD_SUPPORTED_MODELS
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig, PreTrainedModel
|
|
|
|
from ...hparams import ModelArguments
|
|
|
|
|
|
def load_mod_pretrained_model(**init_kwargs) -> "PreTrainedModel":
|
|
from MoD import AutoMoDModelForCausalLM
|
|
|
|
return AutoMoDModelForCausalLM.from_pretrained(**init_kwargs)
|
|
|
|
|
|
def convert_pretrained_model_to_mod(
|
|
model: "PreTrainedModel", config: "PretrainedConfig", model_args: "ModelArguments"
|
|
) -> "PreTrainedModel":
|
|
from MoD import apply_mod_to_hf
|
|
|
|
if getattr(config, "model_type", None) not in MOD_SUPPORTED_MODELS:
|
|
raise ValueError("Current model is not supported by mixture-of-depth.")
|
|
|
|
model = apply_mod_to_hf(model)
|
|
model = model.to(model_args.compute_dtype)
|
|
return model
|