hiyouga 1f4a65afea update web UI, support rm predict #210
Former-commit-id: 92cc6b655dc91b94d5bf9d8618c3b57d5cf94333
2023-07-21 13:27:27 +08:00

66 lines
2.7 KiB
Python

# Inspired by:
# https://github.com/lvwerra/trl/blob/main/examples/summarization/scripts/reward_summarization.py
# https://github.com/CarperAI/trlx/blob/main/examples/summarize_rlhf/reward_model/train_reward_model_gptj.py
from typing import Optional, List
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset
from llmtuner.extras.callbacks import LogCallback
from llmtuner.extras.ploting import plot_loss
from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments
from llmtuner.tuner.core import load_model_and_tokenizer
from llmtuner.tuner.rm.metric import compute_accuracy
from llmtuner.tuner.rm.collator import PairwiseDataCollatorWithPadding
from llmtuner.tuner.rm.trainer import PairwisePeftTrainer
def run_rm(
model_args: ModelArguments,
data_args: DataArguments,
training_args: Seq2SeqTrainingArguments,
finetuning_args: FinetuningArguments,
callbacks: Optional[List[TrainerCallback]] = [LogCallback()]
):
dataset = get_dataset(model_args, data_args)
model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="rm")
dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm")
data_collator = PairwiseDataCollatorWithPadding(tokenizer)
training_args.remove_unused_columns = False # important for pairwise dataset
# Initialize our Trainer
trainer = PairwisePeftTrainer(
finetuning_args=finetuning_args,
model=model,
args=training_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
compute_metrics=compute_accuracy,
**split_dataset(dataset, data_args.dev_ratio, training_args.do_train)
)
# Training
if training_args.do_train:
train_result = trainer.train()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
trainer.save_model()
if trainer.is_world_process_zero() and model_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval")
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(dataset, metric_key_prefix="predict")
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)