LLaMA-Factory/src/llmtuner/chat/vllm_engine.py
hoshi-hiyouga 1ebd1e50e7 Update vllm_engine.py
Former-commit-id: fa2410de07150a82082ab5b88baf56aa891db870
2024-05-07 00:37:05 +08:00

199 lines
7.9 KiB
Python

import uuid
from typing import TYPE_CHECKING, AsyncGenerator, AsyncIterator, Dict, List, Optional, Sequence
from ..data import get_template_and_fix_tokenizer
from ..extras.misc import get_device_count, infer_optim_dtype
from ..extras.packages import is_vllm_available
from ..model import load_config, load_tokenizer
from .base_engine import BaseEngine, Response
if is_vllm_available():
from vllm import AsyncEngineArgs, AsyncLLMEngine, RequestOutput, SamplingParams
from vllm.lora.request import LoRARequest
from vllm.sequence import MultiModalData
if TYPE_CHECKING:
import torch
from numpy.typing import NDArray
from transformers.image_processing_utils import BaseImageProcessor
from ..hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments
class VllmEngine(BaseEngine):
def __init__(
self,
model_args: "ModelArguments",
data_args: "DataArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
) -> None:
config = load_config(model_args) # may download model from ms hub
infer_dtype = infer_optim_dtype(model_dtype=getattr(config, "torch_dtype", None))
infer_dtype = str(infer_dtype).split(".")[-1]
self.can_generate = finetuning_args.stage == "sft"
tokenizer_module = load_tokenizer(model_args)
self.tokenizer = tokenizer_module["tokenizer"]
self.processor = tokenizer_module["processor"]
self.tokenizer.padding_side = "left"
self.template = get_template_and_fix_tokenizer(self.tokenizer, data_args.template)
self.generating_args = generating_args.to_dict()
engine_args = {
"model": model_args.model_name_or_path,
"trust_remote_code": True,
"download_dir": model_args.cache_dir,
"dtype": infer_dtype,
"max_model_len": model_args.vllm_maxlen,
"tensor_parallel_size": get_device_count() or 1,
"gpu_memory_utilization": model_args.vllm_gpu_util,
"disable_log_stats": True,
"disable_log_requests": True,
"enforce_eager": model_args.vllm_enforce_eager,
"enable_lora": model_args.adapter_name_or_path is not None,
}
if model_args.visual_inputs:
# TODO: auto derive from config
# https://github.com/vllm-project/vllm/pull/3042#issuecomment-1984893549
self.image_feature_size = 576
engine_args["image_input_type"] = "pixel_values"
engine_args["image_token_id"] = self.tokenizer.convert_tokens_to_ids("<image>")
engine_args["image_input_shape"] = "1,3,336,336"
engine_args["image_feature_size"] = self.image_feature_size
self.model = AsyncLLMEngine.from_engine_args(AsyncEngineArgs(**engine_args))
if model_args.adapter_name_or_path is not None:
self.lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
else:
self.lora_request = None
async def _generate(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
image: Optional["NDArray"] = None,
**input_kwargs,
) -> AsyncIterator["RequestOutput"]:
request_id = "chatcmpl-{}".format(uuid.uuid4().hex)
if self.processor is not None and image is not None and "<image>" not in messages[0]["content"]:
messages[0]["content"] = "<image>" * self.image_feature_size + messages[0]["content"]
paired_messages = messages + [{"role": "assistant", "content": ""}]
prompt_ids, _ = self.template.encode_oneturn(
tokenizer=self.tokenizer, messages=paired_messages, system=system, tools=tools
)
prompt_length = len(prompt_ids)
temperature = input_kwargs.pop("temperature", None)
top_p = input_kwargs.pop("top_p", None)
top_k = input_kwargs.pop("top_k", None)
num_return_sequences = input_kwargs.pop("num_return_sequences", None)
repetition_penalty = input_kwargs.pop("repetition_penalty", None)
max_length = input_kwargs.pop("max_length", None)
max_new_tokens = input_kwargs.pop("max_new_tokens", None)
stop = input_kwargs.pop("stop", None)
generating_args = self.generating_args.copy()
generating_args.update(
dict(
temperature=temperature or generating_args["temperature"],
top_p=top_p or generating_args["top_p"],
top_k=top_k or generating_args["top_k"],
num_return_sequences=num_return_sequences or 1,
repetition_penalty=repetition_penalty or generating_args["repetition_penalty"],
)
)
if max_length:
generating_args["max_new_tokens"] = max_length - prompt_length
if max_new_tokens:
generating_args["max_new_tokens"] = max_new_tokens
sampling_params = SamplingParams(
n=generating_args["num_return_sequences"],
repetition_penalty=generating_args["repetition_penalty"],
temperature=generating_args["temperature"],
top_p=generating_args["top_p"],
top_k=generating_args["top_k"],
use_beam_search=generating_args["num_beams"] > 1,
length_penalty=generating_args["length_penalty"],
stop=stop,
stop_token_ids=[self.tokenizer.eos_token_id] + self.tokenizer.additional_special_tokens_ids,
max_tokens=generating_args["max_new_tokens"],
skip_special_tokens=True,
)
if self.processor is not None and image is not None:
image_processor: "BaseImageProcessor" = getattr(self.processor, "image_processor")
pixel_values: "torch.Tensor" = image_processor(image, return_tensors="pt")["pixel_values"]
multi_modal_data = MultiModalData(type=MultiModalData.Type.IMAGE, data=pixel_values)
else:
multi_modal_data = None
result_generator = self.model.generate(
prompt=None,
sampling_params=sampling_params,
request_id=request_id,
prompt_token_ids=prompt_ids,
lora_request=self.lora_request,
multi_modal_data=multi_modal_data,
)
return result_generator
async def start(self) -> None:
pass
async def chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
image: Optional["NDArray"] = None,
**input_kwargs,
) -> List["Response"]:
final_output = None
generator = await self._generate(messages, system, tools, image, **input_kwargs)
async for request_output in generator:
final_output = request_output
results = []
for output in final_output.outputs:
results.append(
Response(
response_text=output.text,
response_length=len(output.token_ids),
prompt_length=len(final_output.prompt_token_ids),
finish_reason=output.finish_reason,
)
)
return results
async def stream_chat(
self,
messages: Sequence[Dict[str, str]],
system: Optional[str] = None,
tools: Optional[str] = None,
image: Optional["NDArray"] = None,
**input_kwargs,
) -> AsyncGenerator[str, None]:
generated_text = ""
generator = await self._generate(messages, system, tools, image, **input_kwargs)
async for result in generator:
delta_text = result.outputs[0].text[len(generated_text) :]
generated_text = result.outputs[0].text
yield delta_text
async def get_scores(
self,
batch_input: List[str],
**input_kwargs,
) -> List[float]:
raise NotImplementedError("vLLM engine does not support get_scores.")