LLaMA-Factory/examples/extras/fp8/llama3_fp8_fsdp_sft.yaml
Ben Feuer 1c44b60e3e [feat] fp8 training (#8960)
Co-authored-by: Benjamin Feuer <penfever@gmail.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-01 14:32:53 +08:00

51 lines
1.2 KiB
YAML

# FP8 training example with FSDP
# This config demonstrates FP8 mixed precision training using HuggingFace Accelerate
# with FSDP for distributed training and float8 all-gather optimization
### Model configuration
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
trust_remote_code: true
### Method configuration
stage: sft
do_train: true
finetuning_type: full
### Dataset configuration
dataset: identity
template: llama3
cutoff_len: 1024
max_samples: 1000
overwrite_cache: true
preprocessing_num_workers: 16
### Output configuration
output_dir: saves/llama3-8b/fp8-fsdp/sft
logging_steps: 10
save_steps: 500
plot_loss: true
overwrite_output_dir: true
### Training configuration
per_device_train_batch_size: 1
gradient_accumulation_steps: 8
learning_rate: 5.0e-5
num_train_epochs: 3.0
lr_scheduler_type: cosine
warmup_ratio: 0.1
bf16: true
### FP8 configuration
fp8: true
fp8_backend: torchao # Use TorchAO backend for FP8
fp8_enable_fsdp_float8_all_gather: true # Enable FSDP2 float8 all-gather optimization
### FSDP configuration (using training arguments - no separate FSDP config file)
fsdp:
- full_shard
- auto_wrap
fsdp_transformer_layer_cls_to_wrap: LlamaDecoderLayer
### Logging configuration
report_to: wandb
run_name: llama3_fp8_fsdp_sft