mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
* fix llamapro script * change year Former-commit-id: e2dc5b952aa22835d5220ba624f44676138b65ac
112 lines
4.1 KiB
Python
112 lines
4.1 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from functools import partial
|
|
from typing import TYPE_CHECKING, Callable, Literal, Optional, Tuple
|
|
|
|
from .processors.feedback import preprocess_feedback_dataset
|
|
from .processors.pairwise import preprocess_pairwise_dataset, print_pairwise_dataset_example
|
|
from .processors.pretrain import preprocess_pretrain_dataset, print_pretrain_dataset_example
|
|
from .processors.supervised import (
|
|
preprocess_packed_supervised_dataset,
|
|
preprocess_supervised_dataset,
|
|
print_supervised_dataset_example,
|
|
)
|
|
from .processors.unsupervised import preprocess_unsupervised_dataset, print_unsupervised_dataset_example
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedTokenizer, ProcessorMixin
|
|
|
|
from ..hparams import DataArguments
|
|
from .template import Template
|
|
|
|
|
|
def get_preprocess_and_print_func(
|
|
data_args: "DataArguments",
|
|
stage: Literal["pt", "sft", "rm", "ppo", "kto"],
|
|
template: "Template",
|
|
tokenizer: "PreTrainedTokenizer",
|
|
processor: Optional["ProcessorMixin"],
|
|
do_generate: bool = False,
|
|
) -> Tuple[Callable, Callable]:
|
|
if stage == "pt":
|
|
preprocess_func = partial(
|
|
preprocess_pretrain_dataset,
|
|
tokenizer=tokenizer,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_pretrain_dataset_example, tokenizer=tokenizer)
|
|
elif stage == "sft" and not do_generate:
|
|
if data_args.packing:
|
|
if data_args.neat_packing: # hack datasets to have int32 attention mask
|
|
from datasets.arrow_writer import OptimizedTypedSequence, TypedSequence
|
|
|
|
def __init__(self, data, **kwargs):
|
|
return TypedSequence.__init__(
|
|
self,
|
|
data,
|
|
type=kwargs.pop("type", None),
|
|
try_type=kwargs.pop("try_type", None),
|
|
optimized_int_type=kwargs.pop("optimized_int_type", None),
|
|
)
|
|
|
|
OptimizedTypedSequence.__init__ = __init__
|
|
preprocess_func = partial(
|
|
preprocess_packed_supervised_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
else:
|
|
preprocess_func = partial(
|
|
preprocess_supervised_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
|
|
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
|
elif stage == "rm":
|
|
preprocess_func = partial(
|
|
preprocess_pairwise_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_pairwise_dataset_example, tokenizer=tokenizer)
|
|
elif stage == "kto":
|
|
preprocess_func = partial(
|
|
preprocess_feedback_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_supervised_dataset_example, tokenizer=tokenizer)
|
|
else:
|
|
preprocess_func = partial(
|
|
preprocess_unsupervised_dataset,
|
|
template=template,
|
|
tokenizer=tokenizer,
|
|
processor=processor,
|
|
data_args=data_args,
|
|
)
|
|
print_function = partial(print_unsupervised_dataset_example, tokenizer=tokenizer)
|
|
|
|
return preprocess_func, print_function
|