mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-05 05:02:50 +08:00
134 lines
5.2 KiB
Python
134 lines
5.2 KiB
Python
from functools import partial
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Union
|
|
|
|
from datasets import Features
|
|
|
|
from .utils import Role
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from datasets import Dataset, IterableDataset
|
|
|
|
from ..hparams import DataArguments
|
|
from .parser import DatasetAttr
|
|
|
|
|
|
def convert_alpaca(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
|
|
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
|
|
for i in range(len(examples[dataset_attr.prompt])):
|
|
prompt = []
|
|
if dataset_attr.history and isinstance(examples[dataset_attr.history][i], list):
|
|
for old_prompt, old_response in examples[dataset_attr.history][i]:
|
|
prompt.append({"role": Role.USER.value, "content": old_prompt})
|
|
prompt.append({"role": Role.ASSISTANT.value, "content": old_response})
|
|
|
|
content = []
|
|
if dataset_attr.prompt and examples[dataset_attr.prompt][i]:
|
|
content.append(examples[dataset_attr.prompt][i])
|
|
|
|
if dataset_attr.query and examples[dataset_attr.query][i]:
|
|
content.append(examples[dataset_attr.query][i])
|
|
|
|
prompt.append({"role": Role.USER.value, "content": "\n".join(content)})
|
|
|
|
if dataset_attr.response and isinstance(examples[dataset_attr.response][i], list):
|
|
response = [
|
|
{"role": Role.ASSISTANT.value, "content": content} for content in examples[dataset_attr.response][i]
|
|
]
|
|
elif dataset_attr.response and isinstance(examples[dataset_attr.response][i], str):
|
|
response = [{"role": Role.ASSISTANT.value, "content": examples[dataset_attr.response][i]}]
|
|
else:
|
|
response = []
|
|
|
|
outputs["prompt"].append(prompt)
|
|
outputs["response"].append(response)
|
|
outputs["system"].append(examples[dataset_attr.system][i] if dataset_attr.system else "")
|
|
outputs["tools"].append("")
|
|
|
|
return outputs
|
|
|
|
|
|
def convert_sharegpt(examples: Dict[str, List[Any]], dataset_attr: "DatasetAttr") -> Dict[str, List[Any]]:
|
|
outputs = {"prompt": [], "response": [], "system": [], "tools": []}
|
|
tag_mapping = {
|
|
dataset_attr.user_tag: Role.USER.value,
|
|
dataset_attr.assistant_tag: Role.ASSISTANT.value,
|
|
dataset_attr.observation_tag: Role.OBSERVATION.value,
|
|
dataset_attr.function_tag: Role.FUNCTION.value,
|
|
dataset_attr.system_tag: Role.SYSTEM.value,
|
|
}
|
|
odd_tags = (dataset_attr.user_tag, dataset_attr.observation_tag)
|
|
even_tags = (dataset_attr.assistant_tag, dataset_attr.function_tag)
|
|
accept_tags = (odd_tags, even_tags)
|
|
for i, messages in enumerate(examples[dataset_attr.messages]):
|
|
if dataset_attr.system_tag and messages[0][dataset_attr.role_tag] == dataset_attr.system_tag:
|
|
system = messages[0][dataset_attr.content_tag]
|
|
messages = messages[1:]
|
|
else:
|
|
system = examples[dataset_attr.system][i] if dataset_attr.system else ""
|
|
|
|
messages = messages[: len(messages) // 2 * 2] # should be multiples of 2
|
|
if len(messages) == 0:
|
|
continue
|
|
|
|
aligned_messages = []
|
|
for turn_idx, message in enumerate(messages):
|
|
if message[dataset_attr.role_tag] not in accept_tags[turn_idx % 2]:
|
|
raise ValueError("Invalid role tag in {}.".format(messages))
|
|
|
|
aligned_messages.append(
|
|
{"role": tag_mapping[message[dataset_attr.role_tag]], "content": message[dataset_attr.content_tag]}
|
|
)
|
|
|
|
outputs["prompt"].append(aligned_messages[:-1])
|
|
outputs["response"].append(aligned_messages[-1:])
|
|
outputs["system"].append(system)
|
|
outputs["tools"].append(examples[dataset_attr.tools][i] if dataset_attr.tools else "")
|
|
|
|
return outputs
|
|
|
|
|
|
def align_dataset(
|
|
dataset: Union["Dataset", "IterableDataset"], dataset_attr: "DatasetAttr", data_args: "DataArguments"
|
|
) -> Union["Dataset", "IterableDataset"]:
|
|
r"""
|
|
Aligned dataset:
|
|
prompt: [{"role": "user", "content": "..."}] * (2T - 1)
|
|
response: [{"role": "assistant", "content": "..."}] * N (N > 1 for ranking dataset)
|
|
system: "..."
|
|
tools: "..."
|
|
"""
|
|
if dataset_attr.formatting == "alpaca":
|
|
convert_func = partial(convert_alpaca, dataset_attr=dataset_attr)
|
|
else:
|
|
convert_func = partial(convert_sharegpt, dataset_attr=dataset_attr)
|
|
|
|
column_names = list(next(iter(dataset)).keys())
|
|
features = Features.from_dict(
|
|
{
|
|
"prompt": [
|
|
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
|
],
|
|
"response": [
|
|
{"role": {"dtype": "string", "_type": "Value"}, "content": {"dtype": "string", "_type": "Value"}}
|
|
],
|
|
"system": {"dtype": "string", "_type": "Value"},
|
|
"tools": {"dtype": "string", "_type": "Value"},
|
|
}
|
|
)
|
|
kwargs = {}
|
|
if not data_args.streaming:
|
|
kwargs = dict(
|
|
num_proc=data_args.preprocessing_num_workers,
|
|
load_from_cache_file=(not data_args.overwrite_cache),
|
|
desc="Converting format of dataset",
|
|
)
|
|
|
|
return dataset.map(
|
|
convert_func,
|
|
batched=True,
|
|
remove_columns=column_names,
|
|
features=features,
|
|
**kwargs,
|
|
)
|