mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2026-01-10 08:00:36 +08:00
73 lines
3.0 KiB
Python
73 lines
3.0 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import sys
|
|
from unittest.mock import MagicMock, patch
|
|
|
|
import pytest
|
|
from transformers import AutoModelForCausalLM
|
|
|
|
from llamafactory.v1.accelerator.helper import get_current_accelerator
|
|
|
|
|
|
@pytest.fixture(autouse=True)
|
|
def clear_accelerator_cache():
|
|
get_current_accelerator.cache_clear()
|
|
|
|
|
|
def reload_kernels():
|
|
"""Helper to reload kernel modules to respect mocked accelerator."""
|
|
# Unload kernel interface and registry
|
|
keys_to_remove = [k for k in sys.modules if k.startswith("llamafactory.v1.plugins.model_plugins.kernels")]
|
|
for k in keys_to_remove:
|
|
del sys.modules[k]
|
|
|
|
|
|
@patch("torch.accelerator.current_accelerator")
|
|
def test_apply_kernel(mock_get_accelerator: MagicMock):
|
|
mock_device = MagicMock()
|
|
setattr(mock_device, "type", "npu")
|
|
mock_get_accelerator.return_value = mock_device
|
|
# Force reload of kernels with mocked accelerator
|
|
reload_kernels()
|
|
from llamafactory.v1.plugins.model_plugins.kernels.interface import apply_default_kernels
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
|
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
|
|
original_swiglu_forward = model.model.layers[0].mlp.forward
|
|
model = apply_default_kernels(model=model, include_kernels="npu_fused_rmsnorm")
|
|
assert model.model.layers[0].input_layernorm.forward.__func__ is not original_rmsnorm_forward.__func__
|
|
assert model.model.layers[0].mlp.forward.__func__ is original_swiglu_forward.__func__
|
|
|
|
|
|
@patch("torch.accelerator.current_accelerator")
|
|
def test_apply_all_kernels(mock_get_accelerator: MagicMock):
|
|
get_current_accelerator.cache_clear()
|
|
mock_device = MagicMock()
|
|
setattr(mock_device, "type", "npu")
|
|
mock_get_accelerator.return_value = mock_device
|
|
|
|
# Force reload of kernels with mocked accelerator
|
|
reload_kernels()
|
|
from llamafactory.v1.plugins.model_plugins.kernels.interface import apply_default_kernels
|
|
|
|
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
|
|
|
|
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
|
|
original_swiglu_forward = model.model.layers[0].mlp.forward
|
|
|
|
model = apply_default_kernels(model=model, include_kernels=True)
|
|
assert model.model.layers[0].input_layernorm.forward.__func__ is not original_rmsnorm_forward.__func__
|
|
assert model.model.layers[0].mlp.forward.__func__ is not original_swiglu_forward.__func__
|