Files
LLaMA-Factory/tests_v1/plugins/model_plugins/test_kernel_plugin.py
浮梦 16735b9e35 [v1] Refactor kernel plugin (#9669)
Co-authored-by: frozenleaves <frozen@Mac.local>
2025-12-31 18:26:48 +08:00

73 lines
3.0 KiB
Python

# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import sys
from unittest.mock import MagicMock, patch
import pytest
from transformers import AutoModelForCausalLM
from llamafactory.v1.accelerator.helper import get_current_accelerator
@pytest.fixture(autouse=True)
def clear_accelerator_cache():
get_current_accelerator.cache_clear()
def reload_kernels():
"""Helper to reload kernel modules to respect mocked accelerator."""
# Unload kernel interface and registry
keys_to_remove = [k for k in sys.modules if k.startswith("llamafactory.v1.plugins.model_plugins.kernels")]
for k in keys_to_remove:
del sys.modules[k]
@patch("torch.accelerator.current_accelerator")
def test_apply_kernel(mock_get_accelerator: MagicMock):
mock_device = MagicMock()
setattr(mock_device, "type", "npu")
mock_get_accelerator.return_value = mock_device
# Force reload of kernels with mocked accelerator
reload_kernels()
from llamafactory.v1.plugins.model_plugins.kernels.interface import apply_default_kernels
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
original_swiglu_forward = model.model.layers[0].mlp.forward
model = apply_default_kernels(model=model, include_kernels="npu_fused_rmsnorm")
assert model.model.layers[0].input_layernorm.forward.__func__ is not original_rmsnorm_forward.__func__
assert model.model.layers[0].mlp.forward.__func__ is original_swiglu_forward.__func__
@patch("torch.accelerator.current_accelerator")
def test_apply_all_kernels(mock_get_accelerator: MagicMock):
get_current_accelerator.cache_clear()
mock_device = MagicMock()
setattr(mock_device, "type", "npu")
mock_get_accelerator.return_value = mock_device
# Force reload of kernels with mocked accelerator
reload_kernels()
from llamafactory.v1.plugins.model_plugins.kernels.interface import apply_default_kernels
model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5")
original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward
original_swiglu_forward = model.model.layers[0].mlp.forward
model = apply_default_kernels(model=model, include_kernels=True)
assert model.model.layers[0].input_layernorm.forward.__func__ is not original_rmsnorm_forward.__func__
assert model.model.layers[0].mlp.forward.__func__ is not original_swiglu_forward.__func__