mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-10-16 08:38:09 +08:00
119 lines
5.6 KiB
Python
119 lines
5.6 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from collections import defaultdict
|
|
from typing import TYPE_CHECKING, Any, Dict, List, Optional, Sequence, Tuple
|
|
|
|
from ...extras import logging
|
|
from ...extras.constants import IGNORE_INDEX
|
|
from .processor_utils import DatasetProcessor, infer_seqlen
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from ..mm_plugin import AudioInput, ImageInput, VideoInput
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
class PairwiseDatasetProcessor(DatasetProcessor):
|
|
def _encode_data_example(
|
|
self,
|
|
prompt: Sequence[Dict[str, str]],
|
|
response: Sequence[Dict[str, str]],
|
|
system: Optional[str],
|
|
tools: Optional[str],
|
|
images: Sequence["ImageInput"],
|
|
videos: Sequence["VideoInput"],
|
|
audios: Sequence["AudioInput"],
|
|
) -> Tuple[List[int], List[int], List[int], List[int]]:
|
|
chosen_messages = self.template.mm_plugin.process_messages(
|
|
prompt + [response[0]], images, videos, audios, self.processor
|
|
)
|
|
rejected_messages = self.template.mm_plugin.process_messages(
|
|
prompt + [response[1]], images, videos, audios, self.processor
|
|
)
|
|
prompt_ids, chosen_ids = self.template.encode_oneturn(self.tokenizer, chosen_messages, system, tools)
|
|
_, rejected_ids = self.template.encode_oneturn(self.tokenizer, rejected_messages, system, tools)
|
|
|
|
if self.template.efficient_eos:
|
|
chosen_ids += [self.tokenizer.eos_token_id]
|
|
rejected_ids += [self.tokenizer.eos_token_id]
|
|
|
|
prompt_ids, _ = self.template.mm_plugin.process_token_ids(
|
|
prompt_ids, None, images, videos, audios, self.tokenizer, self.processor
|
|
)
|
|
# consider the response is more important
|
|
source_len, target_len = infer_seqlen(
|
|
len(prompt_ids), max(len(chosen_ids), len(rejected_ids)), self.data_args.cutoff_len
|
|
)
|
|
prompt_ids = prompt_ids[:source_len]
|
|
chosen_ids = chosen_ids[:target_len]
|
|
rejected_ids = rejected_ids[:target_len]
|
|
|
|
chosen_input_ids = prompt_ids + chosen_ids
|
|
chosen_labels = [IGNORE_INDEX] * source_len + chosen_ids
|
|
rejected_input_ids = prompt_ids + rejected_ids
|
|
rejected_labels = [IGNORE_INDEX] * source_len + rejected_ids
|
|
return chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels
|
|
|
|
def preprocess_dataset(self, examples: Dict[str, List[Any]]) -> Dict[str, List[Any]]:
|
|
# build input pairs with format `<bos> X`, `Y1 <eos>` and `Y2 <eos>`
|
|
model_inputs = defaultdict(list)
|
|
for i in range(len(examples["_prompt"])):
|
|
if len(examples["_prompt"][i]) % 2 != 1 or len(examples["_response"][i]) < 2:
|
|
logger.warning_rank0(
|
|
"Dropped invalid example: {}".format(examples["_prompt"][i] + examples["_response"][i])
|
|
)
|
|
continue
|
|
|
|
chosen_input_ids, chosen_labels, rejected_input_ids, rejected_labels = self._encode_data_example(
|
|
prompt=examples["_prompt"][i],
|
|
response=examples["_response"][i],
|
|
system=examples["_system"][i],
|
|
tools=examples["_tools"][i],
|
|
images=examples["_images"][i] or [],
|
|
videos=examples["_videos"][i] or [],
|
|
audios=examples["_audios"][i] or [],
|
|
)
|
|
model_inputs["chosen_input_ids"].append(chosen_input_ids)
|
|
model_inputs["chosen_attention_mask"].append([1] * len(chosen_input_ids))
|
|
model_inputs["chosen_labels"].append(chosen_labels)
|
|
model_inputs["rejected_input_ids"].append(rejected_input_ids)
|
|
model_inputs["rejected_attention_mask"].append([1] * len(rejected_input_ids))
|
|
model_inputs["rejected_labels"].append(rejected_labels)
|
|
model_inputs["images"].append(examples["_images"][i])
|
|
model_inputs["videos"].append(examples["_videos"][i])
|
|
model_inputs["audios"].append(examples["_audios"][i])
|
|
|
|
return model_inputs
|
|
|
|
def print_data_example(self, example: Dict[str, List[int]]) -> None:
|
|
valid_chosen_labels = list(filter(lambda x: x != IGNORE_INDEX, example["chosen_labels"]))
|
|
valid_rejected_labels = list(filter(lambda x: x != IGNORE_INDEX, example["rejected_labels"]))
|
|
print("chosen_input_ids:\n{}".format(example["chosen_input_ids"]))
|
|
print(
|
|
"chosen_inputs:\n{}".format(self.tokenizer.decode(example["chosen_input_ids"], skip_special_tokens=False))
|
|
)
|
|
print("chosen_label_ids:\n{}".format(example["chosen_labels"]))
|
|
print(f"chosen_labels:\n{self.tokenizer.decode(valid_chosen_labels, skip_special_tokens=False)}")
|
|
print("rejected_input_ids:\n{}".format(example["rejected_input_ids"]))
|
|
print(
|
|
"rejected_inputs:\n{}".format(
|
|
self.tokenizer.decode(example["rejected_input_ids"], skip_special_tokens=False)
|
|
)
|
|
)
|
|
print("rejected_label_ids:\n{}".format(example["rejected_labels"]))
|
|
print(f"rejected_labels:\n{self.tokenizer.decode(valid_rejected_labels, skip_special_tokens=False)}")
|