hiyouga a421113466 support qwen tool format
Former-commit-id: 98795854e3fda7b0c0bc209b3e2496b0036e154e
2024-12-17 20:12:06 +00:00

352 lines
11 KiB
Python

# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import re
from abc import ABC, abstractmethod
from dataclasses import dataclass
from datetime import datetime
from typing import Any, Dict, List, NamedTuple, Tuple, Union
from typing_extensions import override
from .data_utils import SLOTS
class FunctionCall(NamedTuple):
name: str
arguments: str
DEFAULT_TOOL_PROMPT = (
"You have access to the following tools:\n{tool_text}"
"Use the following format if using a tool:\n"
"```\n"
"Action: tool name (one of [{tool_names}])\n"
"Action Input: the input to the tool, in a JSON format representing the kwargs "
"""(e.g. ```{{"input": "hello world", "num_beams": 5}}```)\n"""
"```\n"
)
GLM4_TOOL_PROMPT = (
"你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,"
"你的任务是针对用户的问题和要求提供适当的答复和支持。# 可用工具{tool_text}"
)
LLAMA3_TOOL_PROMPT = (
"Cutting Knowledge Date: December 2023\nToday Date: {date}\n\n"
"You have access to the following functions. To call a function, please respond with JSON for a function call. "
"""Respond in the format {{"name": function name, "parameters": dictionary of argument name and its value}}. """
"Do not use variables.\n\n{tool_text}"
)
QWEN_TOOL_PROMPT = (
"\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
"You are provided with function signatures within <tools></tools> XML tags:\n<tools>{tool_text}"
"\n</tools>\n\nFor each function call, return a json object with function name and arguments within "
"""<tool_call></tool_call> XML tags:\n<tool_call>\n{{"name": <function-name>, """
""""arguments": <args-json-object>}}\n</tool_call><|im_end|>\n"""
)
@dataclass
class ToolUtils(ABC):
"""
Base class for tool utilities.
"""
@staticmethod
@abstractmethod
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
r"""
Generates the system message describing all the available tools.
"""
...
@staticmethod
@abstractmethod
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
r"""
Generates the assistant message including all the tool calls.
"""
...
@staticmethod
@abstractmethod
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
r"""
Extracts all the function calls from the assistant message.
It should be an inverse function of `function_formatter`.
"""
...
class DefaultToolUtils(ToolUtils):
r"""
Default tool using template.
"""
@override
@staticmethod
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
tool_text = ""
tool_names = []
for tool in tools:
param_text = ""
for name, param in tool["parameters"]["properties"].items():
required, enum, items = "", "", ""
if name in tool["parameters"].get("required", []):
required = ", required"
if param.get("enum", None):
enum = ", should be one of [{}]".format(", ".join(param["enum"]))
if param.get("items", None):
items = ", where each item should be {}".format(param["items"].get("type", ""))
param_text += " - {name} ({type}{required}): {desc}{enum}{items}\n".format(
name=name,
type=param.get("type", ""),
required=required,
desc=param.get("description", ""),
enum=enum,
items=items,
)
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
name=tool["name"], desc=tool.get("description", ""), args=param_text
)
tool_names.append(tool["name"])
return DEFAULT_TOOL_PROMPT.format(tool_text=tool_text, tool_names=", ".join(tool_names))
@override
@staticmethod
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
function_text = ""
for name, arguments in functions:
function_text += f"Action: {name}\nAction Input: {arguments}\n"
return [function_text]
@override
@staticmethod
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
regex = re.compile(r"Action:\s*([a-zA-Z0-9_]+)\s*Action Input:\s*(.+?)(?=\s*Action:|\s*$)", re.DOTALL)
action_match: List[Tuple[str, str]] = re.findall(regex, content)
if not action_match:
return content
results = []
for match in action_match:
tool_name = match[0].strip()
tool_input = match[1].strip().strip('"').strip("```")
try:
arguments = json.loads(tool_input)
results.append(FunctionCall(tool_name, json.dumps(arguments, ensure_ascii=False)))
except json.JSONDecodeError:
return content
return results
class GLM4ToolUtils(ToolUtils):
r"""
GLM-4 tool using template.
"""
@override
@staticmethod
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
tool_text = ""
for tool in tools:
tool_text += "\n\n## {name}\n\n{body}\n在调用上述函数时,请使用 Json 格式表示调用的参数。".format(
name=tool["name"], body=json.dumps(tool, indent=4, ensure_ascii=False)
)
return GLM4_TOOL_PROMPT.format(tool_text=tool_text)
@override
@staticmethod
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
if len(functions) > 1:
raise ValueError("GLM-4 does not support parallel functions.")
return [f"{functions[0].name}\n{functions[0].arguments}"]
@override
@staticmethod
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
if "\n" not in content:
return content
tool_name, tool_input = content.split("\n", maxsplit=1)
try:
arguments = json.loads(tool_input.strip())
except json.JSONDecodeError:
return content
return [FunctionCall(tool_name, json.dumps(arguments, ensure_ascii=False))]
class Llama3ToolUtils(ToolUtils):
r"""
Llama 3.x tool using template with `tools_in_user_message=False`.
Reference: https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling
"""
@override
@staticmethod
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
date = datetime.now().strftime("%d %b %Y")
tool_text = ""
for tool in tools:
wrapped_tool = {"type": "function", "function": tool}
tool_text += json.dumps(wrapped_tool, indent=4, ensure_ascii=False) + "\n\n"
return LLAMA3_TOOL_PROMPT.format(date=date, tool_text=tool_text)
@override
@staticmethod
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
if len(functions) > 1:
raise ValueError("Llama-3 does not support parallel functions.")
return [f'{{"name": "{functions[0].name}", "parameters": {functions[0].arguments}}}']
@override
@staticmethod
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
try:
tool = json.loads(content.strip())
except json.JSONDecodeError:
return content
if "name" not in tool or "parameters" not in tool:
return content
return [FunctionCall(tool["name"], json.dumps(tool["parameters"], ensure_ascii=False))]
class MistralToolUtils(ToolUtils):
r"""
Mistral v0.3 tool using template.
"""
@override
@staticmethod
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
wrapped_tools = []
for tool in tools:
wrapped_tools.append({"type": "function", "function": tool})
return "[AVAILABLE_TOOLS] " + json.dumps(wrapped_tools, ensure_ascii=False) + "[/AVAILABLE_TOOLS]"
@override
@staticmethod
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
function_texts = []
for name, arguments in functions:
function_texts.append(f'{{"name": "{name}", "arguments": {arguments}}}')
return ["[" + ", ".join(function_texts) + "]"]
@override
@staticmethod
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
try:
tools = json.loads(content.strip())
except json.JSONDecodeError:
return content
if not isinstance(tools, list):
tools = [tools]
results = []
for tool in tools:
if "name" not in tool or "arguments" not in tool:
return content
results.append(FunctionCall(tool["name"], json.dumps(tool["arguments"], ensure_ascii=False)))
return results
class QwenToolUtils(ToolUtils):
r"""
Qwen 2.5 tool using template.
"""
@override
@staticmethod
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
tool_text = ""
for tool in tools:
wrapped_tool = {"type": "function", "function": tool}
tool_text += "\n" + json.dumps(wrapped_tool, ensure_ascii=False)
return QWEN_TOOL_PROMPT.format(tool_text=tool_text)
@override
@staticmethod
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
function_texts = []
for name, arguments in functions:
function_texts.append(
"<tool_call>\n" + f'{{"name": "{name}", "arguments": {arguments}}}' + "\n</tool_call>"
)
return ["\n".join(function_texts)]
@override
@staticmethod
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
regex = re.compile(r"<tool_call>(.+?)</tool_call>(?=\s*<tool_call>|\s*$)", re.DOTALL)
tool_match: List[str] = re.findall(regex, content)
if not tool_match:
return content
results = []
for tool in tool_match:
try:
tool = json.loads(tool.strip())
except json.JSONDecodeError:
return content
if "name" not in tool or "arguments" not in tool:
return content
results.append(FunctionCall(tool["name"], json.dumps(tool["arguments"], ensure_ascii=False)))
return results
TOOLS = {
"default": DefaultToolUtils(),
"glm4": GLM4ToolUtils(),
"llama3": Llama3ToolUtils(),
"mistral": MistralToolUtils(),
"qwen": QwenToolUtils(),
}
def get_tool_utils(name: str) -> "ToolUtils":
tool_utils = TOOLS.get(name, None)
if tool_utils is None:
raise ValueError(f"Tool utils `{name}` not found.")
return tool_utils