mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
352 lines
11 KiB
Python
352 lines
11 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import re
|
|
from abc import ABC, abstractmethod
|
|
from dataclasses import dataclass
|
|
from datetime import datetime
|
|
from typing import Any, Dict, List, NamedTuple, Tuple, Union
|
|
|
|
from typing_extensions import override
|
|
|
|
from .data_utils import SLOTS
|
|
|
|
|
|
class FunctionCall(NamedTuple):
|
|
name: str
|
|
arguments: str
|
|
|
|
|
|
DEFAULT_TOOL_PROMPT = (
|
|
"You have access to the following tools:\n{tool_text}"
|
|
"Use the following format if using a tool:\n"
|
|
"```\n"
|
|
"Action: tool name (one of [{tool_names}])\n"
|
|
"Action Input: the input to the tool, in a JSON format representing the kwargs "
|
|
"""(e.g. ```{{"input": "hello world", "num_beams": 5}}```)\n"""
|
|
"```\n"
|
|
)
|
|
|
|
GLM4_TOOL_PROMPT = (
|
|
"你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,"
|
|
"你的任务是针对用户的问题和要求提供适当的答复和支持。# 可用工具{tool_text}"
|
|
)
|
|
|
|
LLAMA3_TOOL_PROMPT = (
|
|
"Cutting Knowledge Date: December 2023\nToday Date: {date}\n\n"
|
|
"You have access to the following functions. To call a function, please respond with JSON for a function call. "
|
|
"""Respond in the format {{"name": function name, "parameters": dictionary of argument name and its value}}. """
|
|
"Do not use variables.\n\n{tool_text}"
|
|
)
|
|
|
|
QWEN_TOOL_PROMPT = (
|
|
"\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\n"
|
|
"You are provided with function signatures within <tools></tools> XML tags:\n<tools>{tool_text}"
|
|
"\n</tools>\n\nFor each function call, return a json object with function name and arguments within "
|
|
"""<tool_call></tool_call> XML tags:\n<tool_call>\n{{"name": <function-name>, """
|
|
""""arguments": <args-json-object>}}\n</tool_call><|im_end|>\n"""
|
|
)
|
|
|
|
|
|
@dataclass
|
|
class ToolUtils(ABC):
|
|
"""
|
|
Base class for tool utilities.
|
|
"""
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
r"""
|
|
Generates the system message describing all the available tools.
|
|
"""
|
|
...
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
|
|
r"""
|
|
Generates the assistant message including all the tool calls.
|
|
"""
|
|
...
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
r"""
|
|
Extracts all the function calls from the assistant message.
|
|
|
|
It should be an inverse function of `function_formatter`.
|
|
"""
|
|
...
|
|
|
|
|
|
class DefaultToolUtils(ToolUtils):
|
|
r"""
|
|
Default tool using template.
|
|
"""
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
tool_text = ""
|
|
tool_names = []
|
|
for tool in tools:
|
|
param_text = ""
|
|
for name, param in tool["parameters"]["properties"].items():
|
|
required, enum, items = "", "", ""
|
|
if name in tool["parameters"].get("required", []):
|
|
required = ", required"
|
|
|
|
if param.get("enum", None):
|
|
enum = ", should be one of [{}]".format(", ".join(param["enum"]))
|
|
|
|
if param.get("items", None):
|
|
items = ", where each item should be {}".format(param["items"].get("type", ""))
|
|
|
|
param_text += " - {name} ({type}{required}): {desc}{enum}{items}\n".format(
|
|
name=name,
|
|
type=param.get("type", ""),
|
|
required=required,
|
|
desc=param.get("description", ""),
|
|
enum=enum,
|
|
items=items,
|
|
)
|
|
|
|
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
|
|
name=tool["name"], desc=tool.get("description", ""), args=param_text
|
|
)
|
|
tool_names.append(tool["name"])
|
|
|
|
return DEFAULT_TOOL_PROMPT.format(tool_text=tool_text, tool_names=", ".join(tool_names))
|
|
|
|
@override
|
|
@staticmethod
|
|
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
|
|
function_text = ""
|
|
for name, arguments in functions:
|
|
function_text += f"Action: {name}\nAction Input: {arguments}\n"
|
|
|
|
return [function_text]
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
regex = re.compile(r"Action:\s*([a-zA-Z0-9_]+)\s*Action Input:\s*(.+?)(?=\s*Action:|\s*$)", re.DOTALL)
|
|
action_match: List[Tuple[str, str]] = re.findall(regex, content)
|
|
if not action_match:
|
|
return content
|
|
|
|
results = []
|
|
for match in action_match:
|
|
tool_name = match[0].strip()
|
|
tool_input = match[1].strip().strip('"').strip("```")
|
|
try:
|
|
arguments = json.loads(tool_input)
|
|
results.append(FunctionCall(tool_name, json.dumps(arguments, ensure_ascii=False)))
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
return results
|
|
|
|
|
|
class GLM4ToolUtils(ToolUtils):
|
|
r"""
|
|
GLM-4 tool using template.
|
|
"""
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
tool_text = ""
|
|
for tool in tools:
|
|
tool_text += "\n\n## {name}\n\n{body}\n在调用上述函数时,请使用 Json 格式表示调用的参数。".format(
|
|
name=tool["name"], body=json.dumps(tool, indent=4, ensure_ascii=False)
|
|
)
|
|
|
|
return GLM4_TOOL_PROMPT.format(tool_text=tool_text)
|
|
|
|
@override
|
|
@staticmethod
|
|
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
|
|
if len(functions) > 1:
|
|
raise ValueError("GLM-4 does not support parallel functions.")
|
|
|
|
return [f"{functions[0].name}\n{functions[0].arguments}"]
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
if "\n" not in content:
|
|
return content
|
|
|
|
tool_name, tool_input = content.split("\n", maxsplit=1)
|
|
try:
|
|
arguments = json.loads(tool_input.strip())
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
return [FunctionCall(tool_name, json.dumps(arguments, ensure_ascii=False))]
|
|
|
|
|
|
class Llama3ToolUtils(ToolUtils):
|
|
r"""
|
|
Llama 3.x tool using template with `tools_in_user_message=False`.
|
|
|
|
Reference: https://www.llama.com/docs/model-cards-and-prompt-formats/llama3_1/#json-based-tool-calling
|
|
"""
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
date = datetime.now().strftime("%d %b %Y")
|
|
tool_text = ""
|
|
for tool in tools:
|
|
wrapped_tool = {"type": "function", "function": tool}
|
|
tool_text += json.dumps(wrapped_tool, indent=4, ensure_ascii=False) + "\n\n"
|
|
|
|
return LLAMA3_TOOL_PROMPT.format(date=date, tool_text=tool_text)
|
|
|
|
@override
|
|
@staticmethod
|
|
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
|
|
if len(functions) > 1:
|
|
raise ValueError("Llama-3 does not support parallel functions.")
|
|
|
|
return [f'{{"name": "{functions[0].name}", "parameters": {functions[0].arguments}}}']
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
try:
|
|
tool = json.loads(content.strip())
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
if "name" not in tool or "parameters" not in tool:
|
|
return content
|
|
|
|
return [FunctionCall(tool["name"], json.dumps(tool["parameters"], ensure_ascii=False))]
|
|
|
|
|
|
class MistralToolUtils(ToolUtils):
|
|
r"""
|
|
Mistral v0.3 tool using template.
|
|
"""
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
wrapped_tools = []
|
|
for tool in tools:
|
|
wrapped_tools.append({"type": "function", "function": tool})
|
|
|
|
return "[AVAILABLE_TOOLS] " + json.dumps(wrapped_tools, ensure_ascii=False) + "[/AVAILABLE_TOOLS]"
|
|
|
|
@override
|
|
@staticmethod
|
|
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
|
|
function_texts = []
|
|
for name, arguments in functions:
|
|
function_texts.append(f'{{"name": "{name}", "arguments": {arguments}}}')
|
|
|
|
return ["[" + ", ".join(function_texts) + "]"]
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
try:
|
|
tools = json.loads(content.strip())
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
if not isinstance(tools, list):
|
|
tools = [tools]
|
|
|
|
results = []
|
|
for tool in tools:
|
|
if "name" not in tool or "arguments" not in tool:
|
|
return content
|
|
|
|
results.append(FunctionCall(tool["name"], json.dumps(tool["arguments"], ensure_ascii=False)))
|
|
|
|
return results
|
|
|
|
|
|
class QwenToolUtils(ToolUtils):
|
|
r"""
|
|
Qwen 2.5 tool using template.
|
|
"""
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
tool_text = ""
|
|
for tool in tools:
|
|
wrapped_tool = {"type": "function", "function": tool}
|
|
tool_text += "\n" + json.dumps(wrapped_tool, ensure_ascii=False)
|
|
|
|
return QWEN_TOOL_PROMPT.format(tool_text=tool_text)
|
|
|
|
@override
|
|
@staticmethod
|
|
def function_formatter(functions: List["FunctionCall"]) -> SLOTS:
|
|
function_texts = []
|
|
for name, arguments in functions:
|
|
function_texts.append(
|
|
"<tool_call>\n" + f'{{"name": "{name}", "arguments": {arguments}}}' + "\n</tool_call>"
|
|
)
|
|
|
|
return ["\n".join(function_texts)]
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
regex = re.compile(r"<tool_call>(.+?)</tool_call>(?=\s*<tool_call>|\s*$)", re.DOTALL)
|
|
tool_match: List[str] = re.findall(regex, content)
|
|
if not tool_match:
|
|
return content
|
|
|
|
results = []
|
|
for tool in tool_match:
|
|
try:
|
|
tool = json.loads(tool.strip())
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
if "name" not in tool or "arguments" not in tool:
|
|
return content
|
|
|
|
results.append(FunctionCall(tool["name"], json.dumps(tool["arguments"], ensure_ascii=False)))
|
|
|
|
return results
|
|
|
|
|
|
TOOLS = {
|
|
"default": DefaultToolUtils(),
|
|
"glm4": GLM4ToolUtils(),
|
|
"llama3": Llama3ToolUtils(),
|
|
"mistral": MistralToolUtils(),
|
|
"qwen": QwenToolUtils(),
|
|
}
|
|
|
|
|
|
def get_tool_utils(name: str) -> "ToolUtils":
|
|
tool_utils = TOOLS.get(name, None)
|
|
if tool_utils is None:
|
|
raise ValueError(f"Tool utils `{name}` not found.")
|
|
|
|
return tool_utils
|