mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 11:42:49 +08:00
428 lines
18 KiB
Python
428 lines
18 KiB
Python
# Copyright 2024 HuggingFace Inc. and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the original GaLore's implementation: https://github.com/jiaweizzhao/GaLore
|
|
# and the original LoRA+'s implementation: https://github.com/nikhil-ghosh-berkeley/loraplus
|
|
# and the original BAdam's implementation: https://github.com/Ledzy/BAdam
|
|
# and the HuggingFace's TRL library: https://github.com/huggingface/trl
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from typing import TYPE_CHECKING, Callable, Dict, List, Optional, Tuple, Union
|
|
|
|
import torch
|
|
from transformers import Trainer
|
|
from transformers.integrations import is_deepspeed_zero3_enabled
|
|
from transformers.optimization import get_scheduler
|
|
from transformers.pytorch_utils import ALL_LAYERNORM_LAYERS
|
|
from transformers.trainer_pt_utils import get_parameter_names
|
|
|
|
from ..extras.constants import IGNORE_INDEX
|
|
from ..extras.logging import get_logger
|
|
from ..extras.packages import is_galore_available
|
|
from ..hparams import FinetuningArguments, ModelArguments
|
|
from ..model import find_all_linear_modules, load_model, load_tokenizer, load_valuehead_params
|
|
|
|
|
|
if is_galore_available():
|
|
from galore_torch import GaLoreAdafactor, GaLoreAdamW, GaLoreAdamW8bit
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PreTrainedModel, Seq2SeqTrainingArguments
|
|
from trl import AutoModelForCausalLMWithValueHead
|
|
|
|
from ..hparams import DataArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
class DummyOptimizer(torch.optim.Optimizer):
|
|
r"""
|
|
A dummy optimizer used for the GaLore algorithm.
|
|
"""
|
|
|
|
def __init__(
|
|
self, lr: float = 1e-3, optimizer_dict: Optional[Dict["torch.nn.Parameter", "torch.optim.Optimizer"]] = None
|
|
) -> None:
|
|
dummy_tensor = torch.randn(1, 1)
|
|
self.optimizer_dict = optimizer_dict
|
|
super().__init__([dummy_tensor], {"lr": lr})
|
|
|
|
def zero_grad(self, set_to_none: bool = True) -> None:
|
|
pass
|
|
|
|
def step(self, closure: Optional[Callable[[], float]] = None) -> Optional[float]:
|
|
pass
|
|
|
|
|
|
def create_modelcard_and_push(
|
|
trainer: "Trainer",
|
|
model_args: "ModelArguments",
|
|
data_args: "DataArguments",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
) -> None:
|
|
kwargs = {
|
|
"tasks": "text-generation",
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"tags": ["llama-factory", finetuning_args.finetuning_type],
|
|
}
|
|
if data_args.dataset is not None:
|
|
kwargs["dataset"] = data_args.dataset
|
|
|
|
if model_args.use_unsloth:
|
|
kwargs["tags"] = kwargs["tags"] + ["unsloth"]
|
|
|
|
if not training_args.do_train:
|
|
pass
|
|
elif training_args.push_to_hub:
|
|
trainer.push_to_hub(**kwargs)
|
|
else:
|
|
trainer.create_model_card(license="other", **kwargs) # prevent from connecting to hub
|
|
|
|
|
|
def create_ref_model(
|
|
model_args: "ModelArguments", finetuning_args: "FinetuningArguments", add_valuehead: bool = False
|
|
) -> Optional[Union["PreTrainedModel", "AutoModelForCausalLMWithValueHead"]]:
|
|
r"""
|
|
Creates reference model for PPO/DPO training. Evaluation mode is not supported.
|
|
|
|
The valuehead parameter is randomly initialized since it is useless for PPO training.
|
|
"""
|
|
if finetuning_args.ref_model is not None:
|
|
ref_model_args = ModelArguments.copyfrom(
|
|
model_args,
|
|
model_name_or_path=finetuning_args.ref_model,
|
|
adapter_name_or_path=finetuning_args.ref_model_adapters,
|
|
quantization_bit=finetuning_args.ref_model_quantization_bit,
|
|
)
|
|
ref_finetuning_args = FinetuningArguments()
|
|
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
|
|
ref_model = load_model(
|
|
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
|
)
|
|
logger.info("Created reference model from {}".format(finetuning_args.ref_model))
|
|
else:
|
|
if finetuning_args.finetuning_type == "lora":
|
|
ref_model = None
|
|
else:
|
|
ref_model_args = ModelArguments.copyfrom(model_args)
|
|
ref_finetuning_args = FinetuningArguments()
|
|
tokenizer = load_tokenizer(ref_model_args)["tokenizer"]
|
|
ref_model = load_model(
|
|
tokenizer, ref_model_args, ref_finetuning_args, is_trainable=False, add_valuehead=add_valuehead
|
|
)
|
|
logger.info("Created reference model from the model itself.")
|
|
|
|
return ref_model
|
|
|
|
|
|
def create_reward_model(
|
|
model: "AutoModelForCausalLMWithValueHead", model_args: "ModelArguments", finetuning_args: "FinetuningArguments"
|
|
) -> Optional["AutoModelForCausalLMWithValueHead"]:
|
|
r"""
|
|
Creates reward model for PPO training.
|
|
"""
|
|
if finetuning_args.reward_model_type == "api":
|
|
assert finetuning_args.reward_model.startswith("http"), "Please provide full url."
|
|
logger.info("Use reward server {}".format(finetuning_args.reward_model))
|
|
return finetuning_args.reward_model
|
|
elif finetuning_args.reward_model_type == "lora":
|
|
model.pretrained_model.load_adapter(finetuning_args.reward_model, "reward")
|
|
for name, param in model.named_parameters(): # https://github.com/huggingface/peft/issues/1090
|
|
if "default" in name:
|
|
param.data = param.data.to(torch.float32) # trainable params should in fp32
|
|
vhead_params = load_valuehead_params(finetuning_args.reward_model, model_args)
|
|
assert vhead_params is not None, "Reward model is not correctly loaded."
|
|
model.register_buffer("reward_head_weight", vhead_params["v_head.summary.weight"], persistent=False)
|
|
model.register_buffer("reward_head_bias", vhead_params["v_head.summary.bias"], persistent=False)
|
|
model.register_buffer(
|
|
"default_head_weight", torch.zeros_like(vhead_params["v_head.summary.weight"]), persistent=False
|
|
)
|
|
model.register_buffer(
|
|
"default_head_bias", torch.zeros_like(vhead_params["v_head.summary.bias"]), persistent=False
|
|
)
|
|
logger.info("Loaded adapter weights of reward model from {}".format(finetuning_args.reward_model))
|
|
return None
|
|
else:
|
|
reward_model_args = ModelArguments.copyfrom(
|
|
model_args,
|
|
model_name_or_path=finetuning_args.reward_model,
|
|
adapter_name_or_path=finetuning_args.reward_model_adapters,
|
|
quantization_bit=finetuning_args.reward_model_quantization_bit,
|
|
)
|
|
reward_finetuning_args = FinetuningArguments()
|
|
tokenizer = load_tokenizer(reward_model_args)["tokenizer"]
|
|
reward_model = load_model(
|
|
tokenizer, reward_model_args, reward_finetuning_args, is_trainable=False, add_valuehead=True
|
|
)
|
|
logger.info("Loaded full weights of reward model from {}".format(finetuning_args.reward_model))
|
|
logger.warning("Please ensure the ppo model and reward model share SAME tokenizer and vocabulary.")
|
|
return reward_model
|
|
|
|
|
|
def _get_decay_parameter_names(model: "PreTrainedModel") -> List[str]:
|
|
r"""
|
|
Returns a list of names of parameters with weight decay. (weights in non-layernorm layers)
|
|
"""
|
|
decay_parameters = get_parameter_names(model, ALL_LAYERNORM_LAYERS)
|
|
decay_parameters = [name for name in decay_parameters if "bias" not in name]
|
|
return decay_parameters
|
|
|
|
|
|
def _create_galore_optimizer(
|
|
model: "PreTrainedModel",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
) -> "torch.optim.Optimizer":
|
|
if len(finetuning_args.galore_target) == 1 and finetuning_args.galore_target[0] == "all":
|
|
galore_targets = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
|
|
else:
|
|
galore_targets = finetuning_args.galore_target
|
|
|
|
galore_params: List["torch.nn.Parameter"] = []
|
|
for name, module in model.named_modules():
|
|
if isinstance(module, torch.nn.Linear) and any(target in name for target in galore_targets):
|
|
for param in module.parameters():
|
|
if param.requires_grad and len(param.shape) > 1:
|
|
galore_params.append(param)
|
|
|
|
galore_kwargs = {
|
|
"rank": finetuning_args.galore_rank,
|
|
"update_proj_gap": finetuning_args.galore_update_interval,
|
|
"scale": finetuning_args.galore_scale,
|
|
"proj_type": finetuning_args.galore_proj_type,
|
|
}
|
|
|
|
id_galore_params = {id(param) for param in galore_params}
|
|
decay_params, nodecay_params = [], [] # they are non-galore parameters
|
|
trainable_params: List["torch.nn.Parameter"] = [] # galore_params + decay_params + nodecay_params
|
|
decay_param_names = _get_decay_parameter_names(model)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
trainable_params.append(param)
|
|
if id(param) not in id_galore_params:
|
|
if name in decay_param_names:
|
|
decay_params.append(param)
|
|
else:
|
|
nodecay_params.append(param)
|
|
|
|
_, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
|
|
|
if training_args.optim == "adamw_torch":
|
|
optim_class = GaLoreAdamW
|
|
elif training_args.optim in ["adamw_bnb_8bit", "adamw_8bit", "paged_adamw_8bit"]:
|
|
optim_class = GaLoreAdamW8bit
|
|
elif training_args.optim == "adafactor":
|
|
optim_class = GaLoreAdafactor
|
|
else:
|
|
raise NotImplementedError("Unknow optim: {}".format(training_args.optim))
|
|
|
|
if finetuning_args.galore_layerwise:
|
|
if training_args.gradient_accumulation_steps != 1:
|
|
raise ValueError("Per-layer GaLore does not support gradient accumulation.")
|
|
|
|
optimizer_dict: Dict["torch.Tensor", "torch.optim.Optimizer"] = {}
|
|
for param in nodecay_params:
|
|
param_groups = [dict(params=[param], weight_decay=0.0)]
|
|
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
|
for param in decay_params:
|
|
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay)]
|
|
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
|
for param in galore_params: # galore params have weight decay
|
|
param_groups = [dict(params=[param], weight_decay=training_args.weight_decay, **galore_kwargs)]
|
|
optimizer_dict[param] = optim_class(param_groups, **optim_kwargs)
|
|
|
|
def optimizer_hook(param: "torch.nn.Parameter"):
|
|
if param.grad is not None:
|
|
optimizer_dict[param].step()
|
|
optimizer_dict[param].zero_grad()
|
|
|
|
for param in trainable_params:
|
|
param.register_post_accumulate_grad_hook(optimizer_hook)
|
|
|
|
optimizer = DummyOptimizer(lr=training_args.learning_rate, optimizer_dict=optimizer_dict)
|
|
else:
|
|
param_groups = [
|
|
dict(params=nodecay_params, weight_decay=0.0),
|
|
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
|
dict(params=galore_params, weight_decay=training_args.weight_decay, **galore_kwargs),
|
|
]
|
|
optimizer = optim_class(param_groups, **optim_kwargs)
|
|
|
|
logger.info("Using GaLore optimizer, may cause hanging at the start of training, wait patiently.")
|
|
return optimizer
|
|
|
|
|
|
def _create_loraplus_optimizer(
|
|
model: "PreTrainedModel",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
) -> "torch.optim.Optimizer":
|
|
default_lr = training_args.learning_rate
|
|
loraplus_lr = training_args.learning_rate * finetuning_args.loraplus_lr_ratio
|
|
embedding_lr = finetuning_args.loraplus_lr_embedding
|
|
|
|
decay_param_names = _get_decay_parameter_names(model)
|
|
param_dict: Dict[str, List["torch.nn.Parameter"]] = {
|
|
"lora_a": [],
|
|
"lora_b": [],
|
|
"lora_b_nodecay": [],
|
|
"embedding": [],
|
|
}
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
if "lora_embedding_B" in name:
|
|
param_dict["embedding"].append(param)
|
|
elif "lora_B" in name or param.ndim == 1:
|
|
if name in decay_param_names:
|
|
param_dict["lora_b"].append(param)
|
|
else:
|
|
param_dict["lora_b_nodecay"].append(param)
|
|
else:
|
|
param_dict["lora_a"].append(param)
|
|
|
|
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
|
param_groups = [
|
|
dict(params=param_dict["lora_a"], lr=default_lr, weight_decay=training_args.weight_decay),
|
|
dict(params=param_dict["lora_b"], lr=loraplus_lr, weight_decay=training_args.weight_decay),
|
|
dict(params=param_dict["lora_b_nodecay"], lr=loraplus_lr, weight_decay=0.0),
|
|
dict(params=param_dict["embedding"], lr=embedding_lr, weight_decay=training_args.weight_decay),
|
|
]
|
|
optimizer = optim_class(param_groups, **optim_kwargs)
|
|
logger.info("Using LoRA+ optimizer with loraplus lr ratio {:.2f}.".format(finetuning_args.loraplus_lr_ratio))
|
|
return optimizer
|
|
|
|
|
|
def _create_badam_optimizer(
|
|
model: "PreTrainedModel",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
) -> "torch.optim.Optimizer":
|
|
decay_params, nodecay_params = [], []
|
|
decay_param_names = _get_decay_parameter_names(model)
|
|
for name, param in model.named_parameters():
|
|
if param.requires_grad:
|
|
if name in decay_param_names:
|
|
decay_params.append(param)
|
|
else:
|
|
nodecay_params.append(param)
|
|
|
|
optim_class, optim_kwargs = Trainer.get_optimizer_cls_and_kwargs(training_args)
|
|
param_groups = [
|
|
dict(params=nodecay_params, weight_decay=0.0),
|
|
dict(params=decay_params, weight_decay=training_args.weight_decay),
|
|
]
|
|
|
|
if finetuning_args.badam_mode == "layer":
|
|
from badam import BlockOptimizer
|
|
|
|
base_optimizer = optim_class(param_groups, **optim_kwargs)
|
|
optimizer = BlockOptimizer(
|
|
base_optimizer=base_optimizer,
|
|
named_parameters_list=list(model.named_parameters()),
|
|
block_prefix_list=None,
|
|
switch_block_every=finetuning_args.badam_switch_interval,
|
|
start_block=finetuning_args.badam_start_block,
|
|
switch_mode=finetuning_args.badam_switch_mode,
|
|
verbose=finetuning_args.badam_verbose,
|
|
ds_zero3_enabled=is_deepspeed_zero3_enabled(),
|
|
)
|
|
logger.info(
|
|
f"Using BAdam optimizer with layer-wise update, switch mode is {finetuning_args.badam_switch_mode}, "
|
|
f"switch block every {finetuning_args.badam_switch_interval} steps, "
|
|
f"default start block is {finetuning_args.badam_start_block}"
|
|
)
|
|
|
|
elif finetuning_args.badam_mode == "ratio":
|
|
from badam import BlockOptimizerRatio
|
|
|
|
assert finetuning_args.badam_update_ratio > 1e-6
|
|
optimizer = BlockOptimizerRatio(
|
|
param_groups=param_groups,
|
|
named_parameters_list=list(model.named_parameters()),
|
|
update_ratio=finetuning_args.badam_update_ratio,
|
|
mask_mode=finetuning_args.badam_mask_mode,
|
|
verbose=finetuning_args.badam_verbose,
|
|
include_embedding=False,
|
|
**optim_kwargs,
|
|
)
|
|
logger.info(
|
|
f"Using BAdam optimizer with ratio-based update, update ratio is {finetuning_args.badam_update_ratio}, "
|
|
f"mask mode is {finetuning_args.badam_mask_mode}"
|
|
)
|
|
|
|
return optimizer
|
|
|
|
|
|
def create_custom_optimzer(
|
|
model: "PreTrainedModel",
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
) -> Optional["torch.optim.Optimizer"]:
|
|
if finetuning_args.use_galore:
|
|
return _create_galore_optimizer(model, training_args, finetuning_args)
|
|
|
|
if finetuning_args.loraplus_lr_ratio is not None:
|
|
return _create_loraplus_optimizer(model, training_args, finetuning_args)
|
|
|
|
if finetuning_args.use_badam:
|
|
return _create_badam_optimizer(model, training_args, finetuning_args)
|
|
|
|
|
|
def create_custom_scheduler(
|
|
training_args: "Seq2SeqTrainingArguments",
|
|
num_training_steps: int,
|
|
optimizer: Optional["torch.optim.Optimizer"] = None,
|
|
) -> None:
|
|
if optimizer is not None and isinstance(optimizer, DummyOptimizer):
|
|
optimizer_dict = optimizer.optimizer_dict
|
|
scheduler_dict: Dict["torch.nn.Parameter", "torch.optim.lr_scheduler.LRScheduler"] = {}
|
|
|
|
for param in optimizer_dict.keys():
|
|
scheduler_dict[param] = get_scheduler(
|
|
training_args.lr_scheduler_type,
|
|
optimizer=optimizer_dict[param],
|
|
num_warmup_steps=training_args.get_warmup_steps(num_training_steps),
|
|
num_training_steps=num_training_steps,
|
|
scheduler_specific_kwargs=training_args.lr_scheduler_kwargs,
|
|
)
|
|
|
|
def scheduler_hook(param: "torch.nn.Parameter"):
|
|
scheduler_dict[param].step()
|
|
|
|
for param in optimizer_dict.keys():
|
|
param.register_post_accumulate_grad_hook(scheduler_hook)
|
|
|
|
|
|
def get_batch_logps(
|
|
logits: "torch.Tensor", labels: "torch.Tensor", label_pad_token_id: int = IGNORE_INDEX
|
|
) -> Tuple["torch.Tensor", "torch.Tensor"]:
|
|
r"""
|
|
Computes the log probabilities of the given labels under the given logits.
|
|
|
|
Returns:
|
|
logps: A tensor of shape (batch_size,) containing the sum of log probabilities.
|
|
valid_length: A tensor of shape (batch_size,) containing the number of non-masked tokens.
|
|
"""
|
|
if logits.shape[:-1] != labels.shape:
|
|
raise ValueError("Logits (batchsize x seqlen) and labels must have the same shape.")
|
|
|
|
labels = labels[:, 1:].clone()
|
|
logits = logits[:, :-1, :]
|
|
loss_mask = labels != label_pad_token_id
|
|
labels[labels == label_pad_token_id] = 0 # dummy token
|
|
per_token_logps = torch.gather(logits.log_softmax(-1), dim=2, index=labels.unsqueeze(2)).squeeze(2)
|
|
return (per_token_logps * loss_mask).sum(-1), loss_mask.sum(-1)
|