mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-01 11:12:50 +08:00
307 lines
13 KiB
Python
307 lines
13 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import re
|
|
from typing import TYPE_CHECKING
|
|
|
|
import torch
|
|
from peft import LoraConfig, LoraModel, PeftModel, TaskType, get_peft_model
|
|
from transformers.integrations import is_deepspeed_zero3_enabled
|
|
|
|
from ..extras import logging
|
|
from .model_utils.misc import find_all_linear_modules, find_expanded_modules
|
|
from .model_utils.quantization import QuantizationMethod
|
|
from .model_utils.unsloth import get_unsloth_peft_model, load_unsloth_peft_model
|
|
from .model_utils.visual import COMPOSITE_MODELS, get_forbidden_modules, patch_target_modules
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig, PreTrainedModel
|
|
|
|
from ..hparams import FinetuningArguments, ModelArguments
|
|
|
|
|
|
logger = logging.get_logger(__name__)
|
|
|
|
|
|
def _setup_full_tuning(
|
|
model: "PreTrainedModel",
|
|
finetuning_args: "FinetuningArguments",
|
|
is_trainable: bool,
|
|
cast_trainable_params_to_fp32: bool,
|
|
) -> None:
|
|
if not is_trainable:
|
|
return
|
|
|
|
logger.info_rank0("Fine-tuning method: Full")
|
|
forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
|
|
for name, param in model.named_parameters():
|
|
if not any(forbidden_module in name for forbidden_module in forbidden_modules):
|
|
if cast_trainable_params_to_fp32:
|
|
param.data = param.data.to(torch.float32)
|
|
else:
|
|
param.requires_grad_(False)
|
|
|
|
|
|
def _setup_freeze_tuning(
|
|
model: "PreTrainedModel",
|
|
finetuning_args: "FinetuningArguments",
|
|
is_trainable: bool,
|
|
cast_trainable_params_to_fp32: bool,
|
|
) -> None:
|
|
if not is_trainable:
|
|
return
|
|
|
|
logger.info_rank0("Fine-tuning method: Freeze")
|
|
if hasattr(model.config, "text_config"): # composite models
|
|
config = getattr(model.config, "text_config")
|
|
else:
|
|
config = model.config
|
|
|
|
num_layers = (
|
|
getattr(config, "num_hidden_layers", None)
|
|
or getattr(config, "num_layers", None)
|
|
or getattr(config, "n_layer", None)
|
|
)
|
|
if not num_layers:
|
|
raise ValueError("Current model does not support freeze tuning.")
|
|
|
|
if finetuning_args.use_llama_pro:
|
|
if num_layers % finetuning_args.freeze_trainable_layers != 0:
|
|
raise ValueError(
|
|
f"`num_layers` {num_layers} should be "
|
|
f"divisible by `num_layer_trainable` {finetuning_args.freeze_trainable_layers}."
|
|
)
|
|
|
|
stride = num_layers // finetuning_args.freeze_trainable_layers
|
|
trainable_layer_ids = range(stride - 1, num_layers + stride - 1, stride)
|
|
elif finetuning_args.freeze_trainable_layers > 0: # fine-tuning the last n layers if num_layer_trainable > 0
|
|
trainable_layer_ids = range(max(0, num_layers - finetuning_args.freeze_trainable_layers), num_layers)
|
|
else: # fine-tuning the first n layers if num_layer_trainable < 0
|
|
trainable_layer_ids = range(min(-finetuning_args.freeze_trainable_layers, num_layers))
|
|
|
|
hidden_modules = set()
|
|
non_hidden_modules = set()
|
|
for name, _ in model.named_parameters():
|
|
if ".0." in name:
|
|
hidden_modules.add(name.split(".0.")[-1].split(".")[0])
|
|
elif ".1." in name: # MoD starts from layer 1
|
|
hidden_modules.add(name.split(".1.")[-1].split(".")[0])
|
|
|
|
if re.search(r"\.\d+\.", name) is None:
|
|
non_hidden_modules.add(name.split(".")[-2]) # remove weight/bias
|
|
|
|
trainable_layers = []
|
|
for module_name in finetuning_args.freeze_trainable_modules:
|
|
if module_name != "all" and module_name not in hidden_modules:
|
|
raise ValueError(
|
|
"Module {} is not found, please choose from {}".format(module_name, ", ".join(hidden_modules))
|
|
)
|
|
|
|
for idx in trainable_layer_ids:
|
|
trainable_layers.append(".{:d}.{}".format(idx, module_name if module_name != "all" else ""))
|
|
|
|
if finetuning_args.freeze_extra_modules:
|
|
for module_name in finetuning_args.freeze_extra_modules:
|
|
if module_name not in non_hidden_modules:
|
|
raise ValueError(
|
|
"Module {} is not found, please choose from {}".format(module_name, ", ".join(non_hidden_modules))
|
|
)
|
|
|
|
trainable_layers.append(module_name)
|
|
|
|
model_type = getattr(model.config, "model_type", None)
|
|
if not finetuning_args.freeze_multi_modal_projector and model_type in COMPOSITE_MODELS:
|
|
trainable_layers.append(COMPOSITE_MODELS[model_type].projector_key)
|
|
|
|
forbidden_modules = get_forbidden_modules(model.config, finetuning_args)
|
|
for name, param in model.named_parameters():
|
|
if any(trainable_layer in name for trainable_layer in trainable_layers) and not any(
|
|
forbidden_module in name for forbidden_module in forbidden_modules
|
|
):
|
|
if cast_trainable_params_to_fp32:
|
|
param.data = param.data.to(torch.float32)
|
|
else:
|
|
param.requires_grad_(False)
|
|
|
|
logger.info_rank0("Set trainable layers: {}".format(",".join(trainable_layers)))
|
|
|
|
|
|
def _setup_lora_tuning(
|
|
config: "PretrainedConfig",
|
|
model: "PreTrainedModel",
|
|
model_args: "ModelArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
is_trainable: bool,
|
|
cast_trainable_params_to_fp32: bool,
|
|
) -> "PeftModel":
|
|
if is_trainable:
|
|
logger.info_rank0("Fine-tuning method: {}".format("DoRA" if finetuning_args.use_dora else "LoRA"))
|
|
|
|
adapter_to_resume = None
|
|
|
|
if model_args.adapter_name_or_path is not None:
|
|
is_mergeable = True
|
|
if getattr(model, "quantization_method", None): # merge lora in quantized model is unstable
|
|
assert len(model_args.adapter_name_or_path) == 1, "Quantized model only accepts a single adapter."
|
|
is_mergeable = False
|
|
|
|
if is_deepspeed_zero3_enabled():
|
|
assert len(model_args.adapter_name_or_path) == 1, "Cannot use multiple adapters in DeepSpeed ZeRO-3."
|
|
is_mergeable = False
|
|
|
|
if model_args.use_unsloth:
|
|
assert len(model_args.adapter_name_or_path) == 1, "Unsloth model only accepts a single adapter."
|
|
is_mergeable = False
|
|
|
|
if (is_trainable and not finetuning_args.create_new_adapter) or (not is_mergeable):
|
|
adapter_to_merge = model_args.adapter_name_or_path[:-1]
|
|
adapter_to_resume = model_args.adapter_name_or_path[-1]
|
|
else:
|
|
adapter_to_merge = model_args.adapter_name_or_path
|
|
|
|
init_kwargs = {
|
|
"subfolder": model_args.adapter_folder,
|
|
"offload_folder": model_args.offload_folder,
|
|
"cache_dir": model_args.cache_dir,
|
|
"revision": model_args.model_revision,
|
|
"token": model_args.hf_hub_token,
|
|
}
|
|
|
|
for adapter in adapter_to_merge:
|
|
model: LoraModel = PeftModel.from_pretrained(model, adapter, **init_kwargs)
|
|
model = model.merge_and_unload()
|
|
|
|
if len(adapter_to_merge) > 0:
|
|
logger.info_rank0(f"Merged {len(adapter_to_merge)} adapter(s).")
|
|
|
|
if adapter_to_resume is not None: # resume lora training
|
|
if model_args.use_unsloth:
|
|
model = load_unsloth_peft_model(config, model_args, finetuning_args, is_trainable=is_trainable)
|
|
else:
|
|
model = PeftModel.from_pretrained(model, adapter_to_resume, is_trainable=is_trainable, **init_kwargs)
|
|
|
|
logger.info_rank0("Loaded adapter(s): {}".format(",".join(model_args.adapter_name_or_path)))
|
|
|
|
if is_trainable and adapter_to_resume is None: # create new lora weights while training
|
|
if len(finetuning_args.lora_target) == 1 and finetuning_args.lora_target[0] == "all":
|
|
target_modules = find_all_linear_modules(model, finetuning_args.freeze_vision_tower)
|
|
else:
|
|
target_modules = finetuning_args.lora_target
|
|
|
|
if finetuning_args.use_llama_pro:
|
|
target_modules = find_expanded_modules(model, target_modules, finetuning_args.freeze_trainable_layers)
|
|
|
|
target_modules = patch_target_modules(model, finetuning_args, target_modules)
|
|
|
|
if (
|
|
finetuning_args.use_dora
|
|
and getattr(model, "quantization_method", None) is not None
|
|
and getattr(model, "quantization_method", None) != QuantizationMethod.BNB
|
|
):
|
|
raise ValueError("DoRA is not compatible with PTQ-quantized models.")
|
|
|
|
if model_args.resize_vocab and finetuning_args.additional_target is None:
|
|
input_embeddings = model.get_input_embeddings()
|
|
output_embeddings = model.get_output_embeddings()
|
|
module_names = set()
|
|
for name, module in model.named_modules():
|
|
if module in [input_embeddings, output_embeddings]:
|
|
module_names.add(name.split(".")[-1])
|
|
|
|
finetuning_args.additional_target = module_names
|
|
logger.warning_rank0("Vocab has been resized, add {} to trainable params.".format(",".join(module_names)))
|
|
|
|
peft_kwargs = {
|
|
"r": finetuning_args.lora_rank,
|
|
"target_modules": target_modules,
|
|
"lora_alpha": finetuning_args.lora_alpha,
|
|
"lora_dropout": finetuning_args.lora_dropout,
|
|
"use_rslora": finetuning_args.use_rslora,
|
|
"use_dora": finetuning_args.use_dora,
|
|
"modules_to_save": finetuning_args.additional_target,
|
|
}
|
|
|
|
if model_args.use_unsloth:
|
|
model = get_unsloth_peft_model(model, model_args, peft_kwargs)
|
|
else:
|
|
if finetuning_args.pissa_init:
|
|
if finetuning_args.pissa_iter == -1:
|
|
logger.info_rank0("Using PiSSA initialization.")
|
|
peft_kwargs["init_lora_weights"] = "pissa"
|
|
else:
|
|
logger.info_rank0(f"Using PiSSA initialization with FSVD steps {finetuning_args.pissa_iter}.")
|
|
peft_kwargs["init_lora_weights"] = f"pissa_niter_{finetuning_args.pissa_iter}"
|
|
|
|
lora_config = LoraConfig(
|
|
task_type=TaskType.CAUSAL_LM,
|
|
inference_mode=False,
|
|
**peft_kwargs,
|
|
)
|
|
model = get_peft_model(model, lora_config)
|
|
|
|
if is_trainable and cast_trainable_params_to_fp32:
|
|
for param in filter(lambda p: p.requires_grad, model.parameters()):
|
|
param.data = param.data.to(torch.float32)
|
|
|
|
return model
|
|
|
|
|
|
def init_adapter(
|
|
config: "PretrainedConfig",
|
|
model: "PreTrainedModel",
|
|
model_args: "ModelArguments",
|
|
finetuning_args: "FinetuningArguments",
|
|
is_trainable: bool,
|
|
) -> "PreTrainedModel":
|
|
r"""Initialize the adapters.
|
|
|
|
Support full-parameter, freeze and LoRA training.
|
|
|
|
Note that the trainable parameters must be cast to float32.
|
|
"""
|
|
if is_trainable and getattr(model, "quantization_method", None) is not None:
|
|
if finetuning_args.finetuning_type != "lora":
|
|
raise ValueError("Quantized models can only be used for the LoRA tuning.")
|
|
|
|
if finetuning_args.pissa_init:
|
|
raise ValueError("Cannot initialize PiSSA adapter on quantized models.")
|
|
|
|
# cast trainable parameters to float32 if:
|
|
# 1. is_trainable and not pure_bf16 and not badam and quantization_bit is not None (qlora)
|
|
# 2. is_trainable and not pure_bf16 and not badam and not zero3 (zero3 already in fp32)
|
|
cast_trainable_params_to_fp32 = False
|
|
if not is_trainable:
|
|
pass
|
|
elif finetuning_args.pure_bf16 or finetuning_args.use_badam:
|
|
logger.info_rank0("Pure bf16 / BAdam detected, remaining trainable params in half precision.")
|
|
elif model_args.quantization_bit is None and is_deepspeed_zero3_enabled():
|
|
logger.info_rank0("DeepSpeed ZeRO3 detected, remaining trainable params in float32.")
|
|
else:
|
|
logger.info_rank0("Upcasting trainable params to float32.")
|
|
cast_trainable_params_to_fp32 = True
|
|
|
|
if finetuning_args.finetuning_type == "full":
|
|
_setup_full_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
|
|
elif finetuning_args.finetuning_type == "freeze":
|
|
_setup_freeze_tuning(model, finetuning_args, is_trainable, cast_trainable_params_to_fp32)
|
|
elif finetuning_args.finetuning_type == "lora":
|
|
model = _setup_lora_tuning(
|
|
config, model, model_args, finetuning_args, is_trainable, cast_trainable_params_to_fp32
|
|
)
|
|
else:
|
|
raise NotImplementedError(f"Unknown finetuning type: {finetuning_args.finetuning_type}.")
|
|
|
|
return model
|