mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-04 20:52:59 +08:00
183 lines
5.7 KiB
Python
183 lines
5.7 KiB
Python
# Copyright 2024 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import json
|
|
import re
|
|
from abc import ABC, abstractmethod
|
|
from collections import namedtuple
|
|
from dataclasses import dataclass
|
|
from typing import Any, Dict, List, Tuple, Union
|
|
|
|
from typing_extensions import override
|
|
|
|
from .data_utils import SLOTS
|
|
|
|
|
|
DEFAULT_TOOL_PROMPT = (
|
|
"You have access to the following tools:\n{tool_text}"
|
|
"Use the following format if using a tool:\n"
|
|
"```\n"
|
|
"Action: tool name (one of [{tool_names}])\n"
|
|
"Action Input: the input to the tool, in a JSON format representing the kwargs "
|
|
"""(e.g. ```{{"input": "hello world", "num_beams": 5}}```)\n"""
|
|
"```\n"
|
|
)
|
|
|
|
|
|
GLM4_TOOL_PROMPT = (
|
|
"你是一个名为 ChatGLM 的人工智能助手。你是基于智谱AI训练的语言模型 GLM-4 模型开发的,"
|
|
"你的任务是针对用户的问题和要求提供适当的答复和支持。# 可用工具{tool_text}"
|
|
)
|
|
|
|
|
|
FunctionCall = namedtuple("FunctionCall", ["name", "arguments"])
|
|
|
|
|
|
@dataclass
|
|
class ToolUtils(ABC):
|
|
"""
|
|
Base class for tool utilities.
|
|
"""
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def get_function_slots() -> SLOTS:
|
|
r"""
|
|
Gets a list of slots corresponding to a single function call.
|
|
"""
|
|
...
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
r"""
|
|
Generates the system message describing all the available tools.
|
|
"""
|
|
...
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
r"""
|
|
Extracts all the function calls from the response message.
|
|
"""
|
|
...
|
|
|
|
|
|
class DefaultToolUtils(ToolUtils):
|
|
@override
|
|
@staticmethod
|
|
def get_function_slots() -> SLOTS:
|
|
return ["Action: {{name}}\nAction Input: {{arguments}}\n"]
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
tool_text = ""
|
|
tool_names = []
|
|
for tool in tools:
|
|
param_text = ""
|
|
for name, param in tool["parameters"]["properties"].items():
|
|
required, enum, items = "", "", ""
|
|
if name in tool["parameters"].get("required", []):
|
|
required = ", required"
|
|
|
|
if param.get("enum", None):
|
|
enum = ", should be one of [{}]".format(", ".join(param["enum"]))
|
|
|
|
if param.get("items", None):
|
|
items = ", where each item should be {}".format(param["items"].get("type", ""))
|
|
|
|
param_text += " - {name} ({type}{required}): {desc}{enum}{items}\n".format(
|
|
name=name,
|
|
type=param.get("type", ""),
|
|
required=required,
|
|
desc=param.get("description", ""),
|
|
enum=enum,
|
|
items=items,
|
|
)
|
|
|
|
tool_text += "> Tool Name: {name}\nTool Description: {desc}\nTool Args:\n{args}\n".format(
|
|
name=tool["name"], desc=tool.get("description", ""), args=param_text
|
|
)
|
|
tool_names.append(tool["name"])
|
|
|
|
return DEFAULT_TOOL_PROMPT.format(tool_text=tool_text, tool_names=", ".join(tool_names))
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
regex = re.compile(r"Action:\s*([a-zA-Z0-9_]+)\s*Action Input:\s*(.+?)(?=\s*Action:|\s*$)", re.DOTALL)
|
|
action_match: List[Tuple[str, str]] = re.findall(regex, content)
|
|
if not action_match:
|
|
return content
|
|
|
|
results = []
|
|
for match in action_match:
|
|
tool_name = match[0].strip()
|
|
tool_input = match[1].strip().strip('"').strip("```")
|
|
try:
|
|
arguments = json.loads(tool_input)
|
|
results.append((tool_name, json.dumps(arguments, ensure_ascii=False)))
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
return results
|
|
|
|
|
|
class GLM4ToolUtils(ToolUtils):
|
|
@override
|
|
@staticmethod
|
|
def get_function_slots() -> SLOTS:
|
|
return ["{{name}}\n{{arguments}}"]
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_formatter(tools: List[Dict[str, Any]]) -> str:
|
|
tool_text = ""
|
|
for tool in tools:
|
|
tool_text += "\n\n## {name}\n\n{body}\n在调用上述函数时,请使用 Json 格式表示调用的参数。".format(
|
|
name=tool["name"], body=json.dumps(tool, indent=4, ensure_ascii=False)
|
|
)
|
|
|
|
return GLM4_TOOL_PROMPT.format(tool_text=tool_text)
|
|
|
|
@override
|
|
@staticmethod
|
|
def tool_extractor(content: str) -> Union[str, List["FunctionCall"]]:
|
|
if "\n" not in content:
|
|
return content
|
|
|
|
tool_name, tool_input = content.split("\n", maxsplit=1)
|
|
try:
|
|
arguments = json.loads(tool_input)
|
|
except json.JSONDecodeError:
|
|
return content
|
|
|
|
return [(tool_name, json.dumps(arguments, ensure_ascii=False))]
|
|
|
|
|
|
TOOLS = {
|
|
"default": DefaultToolUtils(),
|
|
"glm4": GLM4ToolUtils(),
|
|
}
|
|
|
|
|
|
def get_tool_utils(name: str) -> "ToolUtils":
|
|
tool_utils = TOOLS.get(name, None)
|
|
if tool_utils is None:
|
|
raise ValueError(f"Tool utils `{name}` not found.")
|
|
|
|
return tool_utils
|