mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-27 16:22:50 +08:00
130 lines
5.1 KiB
Python
130 lines
5.1 KiB
Python
import torch
|
|
import inspect
|
|
from typing import TYPE_CHECKING, Any, Dict, List
|
|
from transformers import PreTrainedModel
|
|
from transformers.utils import cached_file
|
|
|
|
from ..extras.constants import V_HEAD_WEIGHTS_NAME, V_HEAD_SAFE_WEIGHTS_NAME
|
|
from ..extras.logging import get_logger
|
|
from ..extras.misc import get_current_device
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import PretrainedConfig, PreTrainedTokenizer
|
|
from ..hparams import ModelArguments, DataArguments, FinetuningArguments
|
|
|
|
|
|
logger = get_logger(__name__)
|
|
|
|
|
|
def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel":
|
|
r"""
|
|
Dispatches a pre-trained model to GPUs with balanced memory when the GPU is available.
|
|
Borrowed from: https://github.com/huggingface/transformers/blob/v4.36.2/src/transformers/modeling_utils.py#L3570
|
|
"""
|
|
if getattr(model, "quantization_method", None): # already set on current device
|
|
return model
|
|
|
|
if (
|
|
torch.cuda.device_count() > 1
|
|
and isinstance(model, PreTrainedModel)
|
|
and model._no_split_modules is not None
|
|
and model.config.model_type != "chatglm"
|
|
):
|
|
from accelerate import dispatch_model
|
|
from accelerate.utils import infer_auto_device_map, get_balanced_memory
|
|
|
|
kwargs = {"dtype": model.dtype, "no_split_module_classes": model._get_no_split_modules("auto")}
|
|
max_memory = get_balanced_memory(model, **kwargs)
|
|
# Make sure tied weights are tied before creating the device map.
|
|
model.tie_weights()
|
|
device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs)
|
|
device_map_kwargs = {"device_map": device_map}
|
|
if "skip_keys" in inspect.signature(dispatch_model).parameters:
|
|
device_map_kwargs["skip_keys"] = model._skip_keys_device_placement
|
|
return dispatch_model(model, **device_map_kwargs)
|
|
else:
|
|
return model.to(device=get_current_device())
|
|
|
|
|
|
def find_all_linear_modules(model: "PreTrainedModel") -> List[str]:
|
|
r"""
|
|
Finds all available modules to apply lora.
|
|
"""
|
|
quantization_method = getattr(model, "quantization_method", None)
|
|
if quantization_method is None:
|
|
linear_cls = torch.nn.Linear
|
|
elif quantization_method == "bitsandbytes":
|
|
import bitsandbytes as bnb
|
|
linear_cls = bnb.nn.Linear4bit if getattr(model, "is_loaded_in_4bit", False) else bnb.nn.Linear8bitLt
|
|
else:
|
|
raise ValueError("Finding linear modules for {} models is not supported.".format(quantization_method))
|
|
|
|
output_layer_names = ["lm_head"]
|
|
if model.config.model_type == "chatglm":
|
|
output_layer_names.append("output_layer")
|
|
|
|
module_names = set()
|
|
for name, module in model.named_modules():
|
|
if (
|
|
isinstance(module, linear_cls)
|
|
and not any([output_layer in name for output_layer in output_layer_names])
|
|
):
|
|
module_names.add(name.split(".")[-1])
|
|
|
|
logger.info("Found linear modules: {}".format(",".join(module_names)))
|
|
return list(module_names)
|
|
|
|
|
|
def get_modelcard_args(
|
|
model_args: "ModelArguments",
|
|
data_args: "DataArguments",
|
|
finetuning_args: "FinetuningArguments"
|
|
) -> Dict[str, Any]:
|
|
return {
|
|
"tasks": "text-generation",
|
|
"license": "other",
|
|
"finetuned_from": model_args.model_name_or_path,
|
|
"dataset": [dataset.strip() for dataset in data_args.dataset.split(",")],
|
|
"tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else [])
|
|
}
|
|
|
|
|
|
def load_valuehead_params(path_or_repo_id: str, model_args: "ModelArguments") -> Dict[str, torch.Tensor]:
|
|
r"""
|
|
Loads value head parameters from Hugging Face Hub or local disk.
|
|
|
|
Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`.
|
|
"""
|
|
kwargs = {
|
|
"path_or_repo_id": path_or_repo_id,
|
|
"cache_dir": model_args.cache_dir,
|
|
"token": model_args.hf_hub_token
|
|
}
|
|
|
|
try:
|
|
from safetensors import safe_open
|
|
vhead_file = cached_file(filename=V_HEAD_SAFE_WEIGHTS_NAME, **kwargs)
|
|
with safe_open(vhead_file, framework="pt", device="cpu") as f:
|
|
return {key: f.get_tensor(key) for key in f.keys()}
|
|
except Exception as err:
|
|
logger.info("Failed to load {}: {}".format(V_HEAD_SAFE_WEIGHTS_NAME, str(err)))
|
|
|
|
try:
|
|
vhead_file = cached_file(filename=V_HEAD_WEIGHTS_NAME, **kwargs)
|
|
return torch.load(vhead_file, map_location="cpu")
|
|
except Exception as err:
|
|
logger.info("Failed to load {}: {}".format(V_HEAD_WEIGHTS_NAME, str(err)))
|
|
|
|
logger.info("Provided path ({}) does not contain value head weights.".format(path_or_repo_id))
|
|
logger.info("Ignore these messages if you are not resuming the training of a value head model.")
|
|
return None
|
|
|
|
|
|
def register_autoclass(config: "PretrainedConfig", model: "PreTrainedModel", tokenizer: "PreTrainedTokenizer"):
|
|
if "AutoConfig" in getattr(config, "auto_map", {}):
|
|
config.__class__.register_for_auto_class()
|
|
if "AutoModelForCausalLM" in getattr(config, "auto_map", {}):
|
|
model.__class__.register_for_auto_class()
|
|
if "AutoTokenizer" in tokenizer.init_kwargs.get("auto_map", {}):
|
|
tokenizer.__class__.register_for_auto_class()
|