mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-01 11:12:50 +08:00
323 lines
14 KiB
Python
323 lines
14 KiB
Python
# Copyright 2025 OpenAccess AI Collective and the LlamaFactory team.
|
|
#
|
|
# This code is inspired by the OpenAccess AI Collective's axolotl library.
|
|
# https://github.com/OpenAccess-AI-Collective/axolotl/blob/main/src/axolotl/monkeypatch/utils.py
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from dataclasses import dataclass
|
|
from typing import TYPE_CHECKING, Any, Literal, Optional
|
|
|
|
import numpy as np
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from peft import PeftModel
|
|
from transformers import DataCollatorForSeq2Seq
|
|
|
|
from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER
|
|
from ..extras.packages import is_pillow_available
|
|
|
|
|
|
if is_pillow_available():
|
|
from PIL import Image
|
|
|
|
|
|
if TYPE_CHECKING:
|
|
from transformers import ProcessorMixin
|
|
|
|
from .template import Template
|
|
|
|
|
|
def prepare_4d_attention_mask(attention_mask_with_indices: "torch.Tensor", dtype: "torch.dtype") -> "torch.Tensor":
|
|
r"""Expand 2d attention mask to 4d attention mask.
|
|
|
|
Expand the attention mask with indices from (batch_size, seq_len) to (batch_size, 1, seq_len, seq_len),
|
|
handle packed sequences and transforms the mask to lower triangular form to prevent future peeking.
|
|
|
|
e.g.
|
|
```python
|
|
# input
|
|
[[1, 1, 2, 2, 2, 0]]
|
|
# output
|
|
[
|
|
[
|
|
[
|
|
[o, x, x, x, x, x],
|
|
[o, o, x, x, x, x],
|
|
[x, x, o, x, x, x],
|
|
[x, x, o, o, x, x],
|
|
[x, x, o, o, o, x],
|
|
[x, x, x, x, x, x],
|
|
]
|
|
]
|
|
]
|
|
```
|
|
where `o` equals to `0.0`, `x` equals to `min_dtype`.
|
|
"""
|
|
_, seq_len = attention_mask_with_indices.size()
|
|
min_dtype = torch.finfo(dtype).min
|
|
zero_tensor = torch.tensor(0, dtype=dtype)
|
|
|
|
# Create a non-padding mask.
|
|
non_padding_mask = (attention_mask_with_indices != 0).unsqueeze(1).unsqueeze(2)
|
|
# Create indices for comparison.
|
|
indices = attention_mask_with_indices.unsqueeze(1).unsqueeze(2) # [bsz, 1, 1, seq_len]
|
|
indices_t = attention_mask_with_indices.unsqueeze(1).unsqueeze(3) # [bsz, 1, seq_len, 1]
|
|
# Create a lower triangular mask.
|
|
tril_mask = torch.tril(torch.ones((seq_len, seq_len), dtype=torch.bool))
|
|
attention_mask_4d = (indices == indices_t) & non_padding_mask & tril_mask
|
|
# Invert the attention mask.
|
|
attention_mask_4d = torch.where(attention_mask_4d, zero_tensor, min_dtype)
|
|
return attention_mask_4d
|
|
|
|
|
|
@dataclass
|
|
class MultiModalDataCollatorForSeq2Seq(DataCollatorForSeq2Seq):
|
|
r"""Data collator that supports VLMs.
|
|
|
|
Features should contain input_ids, attention_mask, labels, and optionally contain images, videos and audios.
|
|
"""
|
|
|
|
template: Optional["Template"] = None
|
|
processor: Optional["ProcessorMixin"] = None
|
|
|
|
def __post_init__(self):
|
|
if self.template is None:
|
|
raise ValueError("Template is required for MultiModalDataCollator.")
|
|
|
|
if isinstance(self.model, PeftModel):
|
|
self.model = self.model.base_model.model
|
|
|
|
if self.model is not None and hasattr(self.model, "get_rope_index"): # for qwen2vl mrope
|
|
self.get_rope_func = self.model.get_rope_index # transformers < 4.52.0 or qwen2.5 omni
|
|
elif self.model is not None and hasattr(self.model, "model") and hasattr(self.model.model, "get_rope_index"):
|
|
self.get_rope_func = self.model.model.get_rope_index # transformers >= 4.52.0
|
|
else:
|
|
self.get_rope_func = None
|
|
|
|
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
|
|
batch_images, batch_videos, batch_audios = [], [], []
|
|
batch_imglens, batch_vidlens, batch_audlens, batch_input_ids = [], [], [], []
|
|
for feature in features:
|
|
images = feature.pop("images", None) or []
|
|
videos = feature.pop("videos", None) or []
|
|
audios = feature.pop("audios", None) or []
|
|
batch_images.extend(images)
|
|
batch_videos.extend(videos)
|
|
batch_audios.extend(audios)
|
|
batch_imglens.append(len(images))
|
|
batch_vidlens.append(len(videos))
|
|
batch_audlens.append(len(audios))
|
|
batch_input_ids.append(feature["input_ids"])
|
|
|
|
fake_input_ids = []
|
|
if (
|
|
self.template.mm_plugin.image_token is not None and sum(batch_imglens) == 0 and sum(batch_vidlens) == 0
|
|
): # avoid process hanging in zero3/fsdp case
|
|
fake_messages = [{"role": "user", "content": IMAGE_PLACEHOLDER}]
|
|
fake_images = [Image.new("RGB", (64, 64), (255, 255, 255))]
|
|
fake_messages = self.template.mm_plugin.process_messages(
|
|
fake_messages, fake_images, [], [], self.processor
|
|
)
|
|
_fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
|
|
_fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
|
|
_fake_input_ids, None, fake_images, [], [], self.tokenizer, self.processor
|
|
)
|
|
fake_input_ids.extend(_fake_input_ids)
|
|
batch_images = fake_images
|
|
batch_imglens[0] = 1
|
|
|
|
if (
|
|
self.template.mm_plugin.audio_token is not None and sum(batch_audlens) == 0
|
|
): # avoid process hanging in zero3/fsdp case
|
|
fake_messages = [{"role": "user", "content": AUDIO_PLACEHOLDER}]
|
|
fake_audios = [np.zeros(1600)]
|
|
fake_messages = self.template.mm_plugin.process_messages(
|
|
fake_messages, [], [], fake_audios, self.processor
|
|
)
|
|
_fake_input_ids = self.tokenizer.encode(fake_messages[0]["content"], add_special_tokens=False)
|
|
_fake_input_ids, _ = self.template.mm_plugin.process_token_ids(
|
|
_fake_input_ids, None, [], [], fake_audios, self.tokenizer, self.processor
|
|
)
|
|
fake_input_ids.extend(_fake_input_ids)
|
|
batch_audios = fake_audios
|
|
batch_audlens[0] = 1
|
|
|
|
if len(fake_input_ids) != 0:
|
|
if self.tokenizer.padding_side == "right":
|
|
features[0]["input_ids"] = features[0]["input_ids"] + fake_input_ids
|
|
features[0]["attention_mask"] = features[0]["attention_mask"] + [0] * len(fake_input_ids)
|
|
features[0]["labels"] = features[0]["labels"] + [IGNORE_INDEX] * len(fake_input_ids)
|
|
else:
|
|
features[0]["input_ids"] = fake_input_ids + features[0]["input_ids"]
|
|
features[0]["attention_mask"] = [0] * len(fake_input_ids) + features[0]["attention_mask"]
|
|
features[0]["labels"] = [IGNORE_INDEX] * len(fake_input_ids) + features[0]["labels"]
|
|
|
|
batch_input_ids[0] = features[0]["input_ids"]
|
|
|
|
mm_inputs = self.template.mm_plugin.get_mm_inputs(
|
|
batch_images,
|
|
batch_videos,
|
|
batch_audios,
|
|
batch_imglens,
|
|
batch_vidlens,
|
|
batch_audlens,
|
|
batch_input_ids,
|
|
self.processor,
|
|
)
|
|
if "token_type_ids" in mm_inputs:
|
|
token_type_ids = mm_inputs.pop("token_type_ids")
|
|
for i, feature in enumerate(features):
|
|
feature["token_type_ids"] = token_type_ids[i]
|
|
|
|
features: dict[str, torch.Tensor] = super().__call__(features)
|
|
|
|
if self.get_rope_func is not None:
|
|
rope_index_kwargs = {
|
|
"input_ids": features["input_ids"],
|
|
"image_grid_thw": mm_inputs.get("image_grid_thw"),
|
|
"video_grid_thw": mm_inputs.get("video_grid_thw"),
|
|
"attention_mask": (features["attention_mask"] >= 1).float(),
|
|
}
|
|
if "second_per_grid_ts" in mm_inputs: # for qwen2vl
|
|
rope_index_kwargs["second_per_grid_ts"] = mm_inputs.get("second_per_grid_ts")
|
|
elif "video_second_per_grid" in mm_inputs: # for qwen2.5 omni
|
|
rope_index_kwargs["second_per_grids"] = mm_inputs.get("video_second_per_grid")
|
|
|
|
if getattr(self.model.config, "model_type", None) == "qwen2_5_omni_thinker": # for qwen2.5 omni
|
|
rope_index_kwargs["use_audio_in_video"] = getattr(self.processor, "use_audio_in_video", False)
|
|
feature_attention_mask = mm_inputs.get("feature_attention_mask", None)
|
|
if feature_attention_mask is not None: # FIXME: need to get video image lengths
|
|
audio_feature_lengths = torch.sum(feature_attention_mask, dim=1)
|
|
rope_index_kwargs["audio_seqlens"] = audio_feature_lengths # prepare for input
|
|
|
|
features["position_ids"], rope_deltas = self.get_rope_func(**rope_index_kwargs)
|
|
features["rope_deltas"] = rope_deltas - (1 - rope_index_kwargs["attention_mask"]).sum(
|
|
dim=-1
|
|
).unsqueeze(-1)
|
|
else: # for qwen2vl
|
|
features["position_ids"], features["rope_deltas"] = self.get_rope_func(**rope_index_kwargs)
|
|
|
|
if (
|
|
self.model is not None
|
|
and getattr(self.model.config, "model_type", None)
|
|
in ["glm4v", "qwen2_vl", "qwen2_5_vl", "qwen2_5_omni_thinker"]
|
|
and ("position_ids" not in features or features["position_ids"].dim() != 3)
|
|
):
|
|
raise ValueError("Qwen2-VL/Qwen2.5-Omni model requires 3D position ids for mrope.")
|
|
|
|
if "cross_attention_mask" in mm_inputs: # for mllama inputs when pad_to_multiple_of is enabled
|
|
cross_attention_mask = mm_inputs.pop("cross_attention_mask")
|
|
seq_len = features["input_ids"].size(1)
|
|
orig_len = cross_attention_mask.size(1)
|
|
mm_inputs["cross_attention_mask"] = F.pad(cross_attention_mask, (0, 0, 0, 0, 0, seq_len - orig_len))
|
|
|
|
features.update(mm_inputs)
|
|
|
|
if "image_bound" in features: # for minicpmv inputs
|
|
bsz, seq_length = features["input_ids"].shape
|
|
features["position_ids"] = torch.arange(seq_length).long().repeat(bsz, 1)
|
|
return {"data": features, "input_ids": features["input_ids"], "labels": features["labels"]}
|
|
|
|
return features
|
|
|
|
|
|
@dataclass
|
|
class SFTDataCollatorWith4DAttentionMask(MultiModalDataCollatorForSeq2Seq):
|
|
r"""Data collator for 4d attention mask."""
|
|
|
|
block_diag_attn: bool = False
|
|
attn_implementation: Literal["eager", "sdpa", "flash_attention_2"] = "eager"
|
|
compute_dtype: "torch.dtype" = torch.float32
|
|
|
|
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
|
|
features = super().__call__(features)
|
|
if self.block_diag_attn and self.attn_implementation != "flash_attention_2":
|
|
features["attention_mask"] = prepare_4d_attention_mask(features["attention_mask"], self.compute_dtype)
|
|
|
|
for key, value in features.items(): # cast data dtype for paligemma
|
|
if torch.is_tensor(value) and torch.is_floating_point(value):
|
|
features[key] = value.to(self.compute_dtype)
|
|
|
|
return features
|
|
|
|
|
|
@dataclass
|
|
class PairwiseDataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
|
r"""Data collator for pairwise data."""
|
|
|
|
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
|
|
r"""Pad batched data to the longest sequence in the batch.
|
|
|
|
We generate 2 * n examples where the first n examples represent chosen examples and
|
|
the last n examples represent rejected examples.
|
|
"""
|
|
concatenated_features = []
|
|
for key in ("chosen", "rejected"):
|
|
for feature in features:
|
|
target_feature = {
|
|
"input_ids": feature[f"{key}_input_ids"],
|
|
"attention_mask": feature[f"{key}_attention_mask"],
|
|
"labels": feature[f"{key}_labels"],
|
|
"images": feature["images"],
|
|
"videos": feature["videos"],
|
|
"audios": feature["audios"],
|
|
}
|
|
concatenated_features.append(target_feature)
|
|
|
|
return super().__call__(concatenated_features)
|
|
|
|
|
|
@dataclass
|
|
class KTODataCollatorWithPadding(MultiModalDataCollatorForSeq2Seq):
|
|
r"""Data collator for KTO data."""
|
|
|
|
def __call__(self, features: list[dict[str, Any]]) -> dict[str, "torch.Tensor"]:
|
|
target_features = []
|
|
kl_features = []
|
|
kto_tags = []
|
|
for feature in features:
|
|
target_feature = {
|
|
"input_ids": feature["input_ids"],
|
|
"attention_mask": feature["attention_mask"],
|
|
"labels": feature["labels"],
|
|
"images": feature["images"],
|
|
"videos": feature["videos"],
|
|
"audios": feature["audios"],
|
|
}
|
|
kl_feature = {
|
|
"input_ids": feature["kl_input_ids"],
|
|
"attention_mask": feature["kl_attention_mask"],
|
|
"labels": feature["kl_labels"],
|
|
"images": feature["images"],
|
|
"videos": feature["videos"],
|
|
"audios": feature["audios"],
|
|
}
|
|
target_features.append(target_feature)
|
|
kl_features.append(kl_feature)
|
|
kto_tags.append(feature["kto_tags"])
|
|
|
|
batch = super().__call__(target_features)
|
|
kl_batch = super().__call__(kl_features)
|
|
batch["kl_input_ids"] = kl_batch["input_ids"]
|
|
batch["kl_attention_mask"] = kl_batch["attention_mask"]
|
|
batch["kl_labels"] = kl_batch["labels"]
|
|
if "cross_attention_mask" in kl_batch: # for mllama inputs
|
|
batch["kl_cross_attention_mask"] = kl_batch["cross_attention_mask"]
|
|
|
|
if "token_type_ids" in kl_batch:
|
|
batch["kl_token_type_ids"] = kl_batch["token_type_ids"]
|
|
|
|
batch["kto_tags"] = torch.tensor(kto_tags)
|
|
return batch
|