LLaMA-Factory/tests/data/test_mm_plugin.py
hiyouga 09a2ecebc4 add test mm plugin
Former-commit-id: a2a8c0b92c49fb1ee65de271aec651e011dcabc4
2024-08-31 01:53:38 +08:00

152 lines
6.1 KiB
Python

# Copyright 2024 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
from collections import defaultdict
from typing import TYPE_CHECKING, Any, Dict
import pytest
import torch
from PIL import Image
from llamafactory.data.mm_plugin import get_mm_plugin
from llamafactory.hparams import ModelArguments
from llamafactory.model import load_tokenizer
if TYPE_CHECKING:
from transformers import ProcessorMixin
from transformers.image_processing_utils import BaseImageProcessor
HF_TOKEN = os.environ.get("HF_TOKEN", None)
TINY_LLAMA = os.environ.get("TINY_LLAMA", "llamafactory/tiny-random-Llama-3")
MESSAGES = [
{"role": "user", "content": "<image>What is in this image?"},
{"role": "assistant", "content": "A cat."},
]
IMAGES = [Image.new("RGB", (32, 32), (255, 255, 255))]
INPUT_IDS = [0, 1, 2, 3, 4]
LABELS = [0, 1, 2, 3, 4]
FEATURE_SEQLENS = {"token_type_ids": 1024}
def _get_mm_inputs(processor: "ProcessorMixin") -> Dict[str, "torch.Tensor"]:
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
return image_processor(images=IMAGES, return_tensors="pt")
def _is_close(batch_a: Dict[str, Any], batch_b: Dict[str, Any]):
assert batch_a.keys() == batch_b.keys()
for key in batch_a.keys():
if isinstance(batch_a[key], list):
assert len(batch_a[key]) == len(batch_b[key])
for i in range(len(batch_a[key])):
if isinstance(batch_a[key][i], torch.Tensor):
assert torch.allclose(batch_a[key][i], batch_b[key][i], rtol=1e-4, atol=1e-5)
else:
assert batch_a[key][i] == batch_b[key][i]
elif isinstance(batch_a[key], torch.Tensor):
assert torch.allclose(batch_a[key], batch_b[key], rtol=1e-4, atol=1e-5)
else:
raise NotImplementedError
def test_base_plugin():
model_args = ModelArguments(model_name_or_path=TINY_LLAMA)
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
processor = tokenizer_module["processor"]
base_plugin = get_mm_plugin(name="base", image_token="<image>")
model_inputs = defaultdict(list)
base_plugin.process_model_inputs(model_inputs, IMAGES, FEATURE_SEQLENS, processor)
assert base_plugin.process_messages(MESSAGES, IMAGES, processor)
assert base_plugin.process_token_ids(INPUT_IDS, LABELS, tokenizer, processor) == (INPUT_IDS, LABELS)
_is_close(base_plugin.get_mm_inputs(IMAGES, FEATURE_SEQLENS, processor), {})
_is_close(model_inputs, {})
def test_llava_plugin():
model_args = ModelArguments(model_name_or_path="llava-hf/llava-1.5-7b-hf")
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
processor = tokenizer_module["processor"]
mm_inputs = _get_mm_inputs(processor)
expected_model_inputs = {key: [value[0]] for key, value in mm_inputs.items()}
llava_plugin = get_mm_plugin(name="llava", image_token="<image>")
model_inputs = defaultdict(list)
llava_plugin.process_model_inputs(model_inputs, IMAGES, FEATURE_SEQLENS, processor)
assert llava_plugin.process_messages(MESSAGES, IMAGES, processor)
assert llava_plugin.process_token_ids(INPUT_IDS, LABELS, tokenizer, processor) == (INPUT_IDS, LABELS)
_is_close(llava_plugin.get_mm_inputs(IMAGES, FEATURE_SEQLENS, processor), mm_inputs)
_is_close(model_inputs, expected_model_inputs)
@pytest.mark.skipif(not HF_TOKEN, reason="Gated model.")
def test_paligemma_plugin():
model_args = ModelArguments(model_name_or_path="google/paligemma-3b-pt-224")
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
processor = tokenizer_module["processor"]
image_processor: "BaseImageProcessor" = getattr(processor, "image_processor")
image_seq_length: int = getattr(image_processor, "image_seq_length")
mm_inputs = _get_mm_inputs(processor)
mm_inputs["token_type_ids"] = [[0] * image_seq_length + [1] * (1024 - image_seq_length)]
expected_model_inputs = {key: [value[0]] for key, value in mm_inputs.items()}
expected_input_ids = [tokenizer.convert_tokens_to_ids("<image>")] * image_seq_length + INPUT_IDS
expected_labels = [-100] * image_seq_length + LABELS
paligemma_plugin = get_mm_plugin(name="paligemma", image_token="<image>")
model_inputs = defaultdict(list)
paligemma_plugin.process_model_inputs(model_inputs, IMAGES, FEATURE_SEQLENS, processor)
assert paligemma_plugin.process_messages(MESSAGES, IMAGES, processor)
assert paligemma_plugin.process_token_ids(INPUT_IDS, LABELS, tokenizer, processor) == (
expected_input_ids,
expected_labels,
)
_is_close(paligemma_plugin.get_mm_inputs(IMAGES, FEATURE_SEQLENS, processor), mm_inputs)
_is_close(model_inputs, expected_model_inputs)
def test_qwen2_vl_plugin():
model_args = ModelArguments(model_name_or_path="Qwen/Qwen2-VL-7B-Instruct")
tokenizer_module = load_tokenizer(model_args)
tokenizer = tokenizer_module["tokenizer"]
processor = tokenizer_module["processor"]
mm_inputs = _get_mm_inputs(processor)
expected_model_inputs = {key: [value] for key, value in mm_inputs.items()}
llava_plugin = get_mm_plugin(name="qwen2_vl", image_token="<|image_pad|>")
model_inputs = defaultdict(list)
llava_plugin.process_model_inputs(model_inputs, IMAGES, FEATURE_SEQLENS, processor)
assert llava_plugin.process_messages(MESSAGES, IMAGES, processor)
assert llava_plugin.process_token_ids(INPUT_IDS, LABELS, tokenizer, processor) == (INPUT_IDS, LABELS)
_is_close(llava_plugin.get_mm_inputs(IMAGES, FEATURE_SEQLENS, processor), mm_inputs)
_is_close(model_inputs, expected_model_inputs)