Files
LLaMA-Factory/src/llamafactory/train/dpo/ktrainer.py
2025-12-20 16:19:39 +08:00

63 lines
2.7 KiB
Python

# Copyright 2025 HuggingFace Inc. and the LlamaFactory team.
#
# This code is inspired by the HuggingFace's TRL library.
# https://github.com/huggingface/trl/blob/v0.8.0/trl/trainer/dpo_trainer.py
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import TYPE_CHECKING
import torch
from ktransformers.sft.lora import KTrainer # type: ignore
from typing_extensions import override
from ..trainer_utils import get_batch_logps, nested_detach
from .trainer import CustomDPOTrainer
if TYPE_CHECKING:
from transformers import PreTrainedModel
class KDPOTrainer(KTrainer, CustomDPOTrainer):
@override
def concatenated_forward(
self, model: "PreTrainedModel", batch: dict[str, "torch.Tensor"], is_ref_model: bool = False
) -> tuple["torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor", "torch.Tensor"]:
r"""Compute the sum log probabilities of the labels under given logits if loss_type is not IPO, ORPO or SimPO.
Otherwise the average log probabilities.
"""
if self.finetuning_args.use_ref_model:
batch = nested_detach(batch, clone=True) # avoid error
labels = batch.pop("labels") # dpo do not need compute loss in forward
all_logits: torch.Tensor = model(**batch, return_dict=True, use_cache=False).logits.to(torch.float32)
all_logits = all_logits.to("cpu")
labels = labels.to(all_logits.device)
all_logps, valid_length = get_batch_logps(
logits=all_logits, labels=labels, ld_alpha=(self.ld_alpha if not is_ref_model else None)
)
if self.loss_type in ["ipo", "orpo", "simpo"]:
all_logps = all_logps / valid_length
batch_size = batch["input_ids"].size(0) // 2
chosen_logps, rejected_logps = all_logps.split(batch_size, dim=0)
chosen_logits, rejected_logits = all_logits.split(batch_size, dim=0)
chosen_length, _ = valid_length.split(batch_size, dim=0)
if self.loss_type in ["ipo", "orpo", "simpo"]:
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps
else:
return chosen_logps, rejected_logps, chosen_logits, rejected_logits, chosen_logps / chosen_length