mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-12-23 23:30:36 +08:00
46 lines
990 B
YAML
46 lines
990 B
YAML
# Start FSDP2 fine-tuning
|
|
# accelerate launch \
|
|
# --config_file examples/accelerate/fsdp2_config.yaml \
|
|
# src/train.py examples/ascend/qwen3_full_sft_fsdp2.yaml
|
|
# Change `num_processes` in fsdp2_config.yaml to 16 in A3
|
|
|
|
### model
|
|
model_name_or_path: Qwen/Qwen3-8B
|
|
trust_remote_code: true
|
|
use_v1_kernels: true
|
|
flash_attn: fa2
|
|
|
|
### method
|
|
stage: sft
|
|
do_train: true
|
|
finetuning_type: full
|
|
|
|
### dataset
|
|
dataset: alpaca_en_demo
|
|
template: qwen3
|
|
cutoff_len: 2048
|
|
max_samples: 1000
|
|
overwrite_cache: true
|
|
preprocessing_num_workers: 16
|
|
dataloader_num_workers: 4
|
|
|
|
### output
|
|
output_dir: saves/Qwen3-8B/full/sft
|
|
logging_steps: 1
|
|
save_steps: 500
|
|
max_steps: 500
|
|
plot_loss: true
|
|
overwrite_output_dir: true
|
|
save_only_model: false
|
|
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
|
|
|
### train
|
|
per_device_train_batch_size: 8
|
|
gradient_accumulation_steps: 1
|
|
learning_rate: 1.0e-5
|
|
lr_scheduler_type: cosine
|
|
warmup_ratio: 0.1
|
|
bf16: true
|
|
ddp_timeout: 1800
|
|
resume_from_checkpoint: null
|