BUAADreamer 69fb4351f5 merge data part to the text stream
Former-commit-id: 7ee20286d9bcc2d5378bfd6bb02cd3648396d873
2024-04-25 19:19:59 +08:00

128 lines
4.5 KiB
Python

# Inspired by: https://github.com/huggingface/transformers/blob/v4.34.1/examples/pytorch/summarization/run_summarization.py
import os
from typing import TYPE_CHECKING, List, Optional
from ...data import get_dataset
from ...extras.misc import get_logits_processor
from ...extras.ploting import plot_loss
from ...model import load_processor, load_model
from ..utils import create_modelcard_and_push
from .metric import ComputeMetrics
from .trainer import CustomSeq2SeqTrainer
from transformers import DataCollatorForSeq2Seq
from ...extras.constants import IGNORE_INDEX
if TYPE_CHECKING:
from transformers import Seq2SeqTrainingArguments, TrainerCallback
from ...hparams import (
DataArguments,
FinetuningArguments,
GeneratingArguments,
ModelArguments,
)
def run_sft_mm(
model_args: "ModelArguments",
data_args: "DataArguments",
training_args: "Seq2SeqTrainingArguments",
finetuning_args: "FinetuningArguments",
generating_args: "GeneratingArguments",
callbacks: Optional[List["TrainerCallback"]] = None,
):
processor = load_processor(model_args)
tokenizer = processor.tokenizer
dataset = get_dataset(
tokenizer, model_args, data_args, training_args, "sft", processor
)
model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train)
if getattr(model, "is_quantized", False) and not training_args.do_train:
setattr(
model, "_hf_peft_config_loaded", True
) # hack here: make model compatible with prediction
train_dataset = dataset
eval_dataset = dataset
data_collator = DataCollatorForSeq2Seq(
tokenizer=tokenizer,
pad_to_multiple_of=(
8 if tokenizer.padding_side == "right" else None
), # for shift short attention
label_pad_token_id=(
IGNORE_INDEX
if data_args.ignore_pad_token_for_loss
else tokenizer.pad_token_id
),
)
# Override the decoding parameters of Seq2SeqTrainer
training_args.generation_max_length = (
training_args.generation_max_length or data_args.cutoff_len
)
training_args.generation_num_beams = (
data_args.eval_num_beams or training_args.generation_num_beams
)
training_args.remove_unused_columns = False
# Initialize our Trainer
trainer = CustomSeq2SeqTrainer(
model=model,
args=training_args,
finetuning_args=finetuning_args,
tokenizer=tokenizer,
data_collator=data_collator,
callbacks=callbacks,
compute_metrics=(
ComputeMetrics(tokenizer) if training_args.predict_with_generate else None
),
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
# Keyword arguments for `model.generate`
gen_kwargs = generating_args.to_dict()
gen_kwargs["eos_token_id"] = [
tokenizer.eos_token_id
] + tokenizer.additional_special_tokens_ids
gen_kwargs["pad_token_id"] = tokenizer.pad_token_id
gen_kwargs["logits_processor"] = get_logits_processor()
# Training
if training_args.do_train:
train_result = trainer.train(
resume_from_checkpoint=training_args.resume_from_checkpoint
)
trainer.save_model()
trainer.log_metrics("train", train_result.metrics)
trainer.save_metrics("train", train_result.metrics)
trainer.save_state()
if trainer.is_world_process_zero() and finetuning_args.plot_loss:
plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])
# Evaluation
if training_args.do_eval:
metrics = trainer.evaluate(metric_key_prefix="eval", **gen_kwargs)
if (
training_args.predict_with_generate
): # eval_loss will be wrong if predict_with_generate is enabled
metrics.pop("eval_loss", None)
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Predict
if training_args.do_predict:
predict_results = trainer.predict(
dataset, metric_key_prefix="predict", **gen_kwargs
)
if (
training_args.predict_with_generate
): # predict_loss will be wrong if predict_with_generate is enabled
predict_results.metrics.pop("predict_loss", None)
trainer.log_metrics("predict", predict_results.metrics)
trainer.save_metrics("predict", predict_results.metrics)
trainer.save_predictions(predict_results)
# Create model card
create_modelcard_and_push(
trainer, model_args, data_args, training_args, finetuning_args
)