Ben Feuer 05271756d2
[feat] fp8 training (#8960)
Co-authored-by: Benjamin Feuer <penfever@gmail.com>
Co-authored-by: Yaowei Zheng <hiyouga@buaa.edu.cn>
2025-10-01 14:32:53 +08:00

94 lines
3.6 KiB
Python

# Copyright 2025 the LlamaFactory team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from types import MethodType
from typing import TYPE_CHECKING, Optional
import torch
from transformers import Trainer
from typing_extensions import override
from ...extras.packages import is_transformers_version_greater_than
from ..callbacks import SaveProcessorCallback
from ..fp8_utils import configure_fp8_environment, verify_fp8_status
from ..trainer_utils import create_custom_optimizer, create_custom_scheduler
if TYPE_CHECKING:
from transformers import ProcessorMixin
from ...hparams import FinetuningArguments, ModelArguments
class CustomTrainer(Trainer):
r"""Inherit Trainer for custom optimizer."""
def __init__(
self,
finetuning_args: "FinetuningArguments",
processor: Optional["ProcessorMixin"],
model_args: Optional["ModelArguments"] = None,
**kwargs,
) -> None:
# Configure FP8 environment if enabled
if model_args is not None and model_args.fp8:
configure_fp8_environment(model_args)
if is_transformers_version_greater_than("4.46"):
kwargs["processing_class"] = kwargs.pop("tokenizer")
super().__init__(**kwargs)
if processor is not None:
# avoid wrong loss under gradient accumulation
# https://github.com/huggingface/transformers/pull/36044#issuecomment-2746657112
self.model_accepts_loss_kwargs = False
self.finetuning_args = finetuning_args
if processor is not None:
self.add_callback(SaveProcessorCallback(processor))
if finetuning_args.use_badam:
from badam import BAdamCallback, clip_grad_norm_old_version # type: ignore
self.accelerator.clip_grad_norm_ = MethodType(clip_grad_norm_old_version, self.accelerator)
self.add_callback(BAdamCallback)
# Verify FP8 status after trainer initialization (accelerator should be available)
if model_args is not None and model_args.fp8 and hasattr(self, "accelerator"):
verify_fp8_status(self.accelerator, model_args)
@override
def create_optimizer(self) -> "torch.optim.Optimizer":
if self.optimizer is None:
self.optimizer = create_custom_optimizer(self.model, self.args, self.finetuning_args)
return super().create_optimizer()
@override
def create_scheduler(
self, num_training_steps: int, optimizer: Optional["torch.optim.Optimizer"] = None
) -> "torch.optim.lr_scheduler.LRScheduler":
create_custom_scheduler(self.args, num_training_steps, optimizer)
return super().create_scheduler(num_training_steps, optimizer)
@override
def _get_train_sampler(self, *args, **kwargs) -> Optional["torch.utils.data.Sampler"]:
if self.finetuning_args.disable_shuffling:
return torch.utils.data.SequentialSampler(self.train_dataset)
return super()._get_train_sampler(*args, **kwargs)
@override
def compute_loss(self, model, inputs, *args, **kwargs):
return super().compute_loss(model, inputs, *args, **kwargs)