mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-25 07:12:50 +08:00
186 lines
6.4 KiB
Python
186 lines
6.4 KiB
Python
from typing import TYPE_CHECKING, Dict
|
|
from transformers.trainer_utils import SchedulerType
|
|
|
|
import gradio as gr
|
|
|
|
from llmtuner.extras.constants import STAGES
|
|
from llmtuner.webui.common import list_checkpoint, list_dataset, DEFAULT_DATA_DIR
|
|
from llmtuner.webui.components.data import create_preview_box
|
|
from llmtuner.webui.utils import can_preview, get_preview, gen_plot
|
|
|
|
if TYPE_CHECKING:
|
|
from gradio.components import Component
|
|
from llmtuner.webui.runner import Runner
|
|
|
|
|
|
def create_train_tab(top_elems: Dict[str, "Component"], runner: "Runner") -> Dict[str, "Component"]:
|
|
with gr.Row():
|
|
training_stage = gr.Dropdown(choices=STAGES, value=STAGES[0], scale=2)
|
|
dataset_dir = gr.Textbox(value=DEFAULT_DATA_DIR, scale=2)
|
|
dataset = gr.Dropdown(multiselect=True, scale=4)
|
|
data_preview_btn = gr.Button(interactive=False, scale=1)
|
|
|
|
preview_box, preview_count, preview_samples, close_btn = create_preview_box()
|
|
|
|
training_stage.change(list_dataset, [dataset_dir, training_stage], [dataset])
|
|
dataset_dir.change(list_dataset, [dataset_dir, training_stage], [dataset])
|
|
dataset.change(can_preview, [dataset_dir, dataset], [data_preview_btn])
|
|
data_preview_btn.click(
|
|
get_preview,
|
|
[dataset_dir, dataset],
|
|
[preview_count, preview_samples, preview_box],
|
|
queue=False
|
|
)
|
|
|
|
with gr.Row():
|
|
max_source_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
|
|
max_target_length = gr.Slider(value=512, minimum=4, maximum=4096, step=1)
|
|
learning_rate = gr.Textbox(value="5e-5")
|
|
num_train_epochs = gr.Textbox(value="3.0")
|
|
max_samples = gr.Textbox(value="100000")
|
|
|
|
with gr.Row():
|
|
batch_size = gr.Slider(value=4, minimum=1, maximum=512, step=1)
|
|
gradient_accumulation_steps = gr.Slider(value=4, minimum=1, maximum=512, step=1)
|
|
lr_scheduler_type = gr.Dropdown(
|
|
choices=[scheduler.value for scheduler in SchedulerType], value="cosine"
|
|
)
|
|
max_grad_norm = gr.Textbox(value="1.0")
|
|
val_size = gr.Slider(value=0, minimum=0, maximum=1, step=0.001)
|
|
|
|
with gr.Accordion(label="Advanced config", open=False) as advanced_tab:
|
|
with gr.Row():
|
|
logging_steps = gr.Slider(value=5, minimum=5, maximum=1000, step=5)
|
|
save_steps = gr.Slider(value=100, minimum=10, maximum=5000, step=10)
|
|
warmup_steps = gr.Slider(value=0, minimum=0, maximum=5000, step=1)
|
|
compute_type = gr.Radio(choices=["fp16", "bf16"], value="fp16")
|
|
padding_side = gr.Radio(choices=["left", "right"], value="left")
|
|
|
|
with gr.Accordion(label="LoRA config", open=False) as lora_tab:
|
|
with gr.Row():
|
|
lora_rank = gr.Slider(value=8, minimum=1, maximum=1024, step=1, scale=1)
|
|
lora_dropout = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=1)
|
|
lora_target = gr.Textbox(scale=2)
|
|
resume_lora_training = gr.Checkbox(value=True, scale=1)
|
|
|
|
with gr.Accordion(label="RLHF config", open=False) as rlhf_tab:
|
|
with gr.Row():
|
|
dpo_beta = gr.Slider(value=0.1, minimum=0, maximum=1, step=0.01, scale=2)
|
|
reward_model = gr.Dropdown(scale=2)
|
|
refresh_btn = gr.Button(scale=1)
|
|
|
|
refresh_btn.click(
|
|
list_checkpoint,
|
|
[top_elems["model_name"], top_elems["finetuning_type"]],
|
|
[reward_model],
|
|
queue=False
|
|
)
|
|
|
|
with gr.Row():
|
|
cmd_preview_btn = gr.Button()
|
|
start_btn = gr.Button()
|
|
stop_btn = gr.Button()
|
|
|
|
with gr.Row():
|
|
with gr.Column(scale=3):
|
|
with gr.Row():
|
|
output_dir = gr.Textbox()
|
|
|
|
with gr.Row():
|
|
process_bar = gr.Slider(visible=False, interactive=False)
|
|
|
|
with gr.Box():
|
|
output_box = gr.Markdown()
|
|
|
|
with gr.Column(scale=1):
|
|
loss_viewer = gr.Plot()
|
|
|
|
input_components = [
|
|
top_elems["lang"],
|
|
top_elems["model_name"],
|
|
top_elems["checkpoints"],
|
|
top_elems["finetuning_type"],
|
|
top_elems["quantization_bit"],
|
|
top_elems["template"],
|
|
top_elems["system_prompt"],
|
|
training_stage,
|
|
dataset_dir,
|
|
dataset,
|
|
max_source_length,
|
|
max_target_length,
|
|
learning_rate,
|
|
num_train_epochs,
|
|
max_samples,
|
|
batch_size,
|
|
gradient_accumulation_steps,
|
|
lr_scheduler_type,
|
|
max_grad_norm,
|
|
val_size,
|
|
logging_steps,
|
|
save_steps,
|
|
warmup_steps,
|
|
compute_type,
|
|
padding_side,
|
|
lora_rank,
|
|
lora_dropout,
|
|
lora_target,
|
|
resume_lora_training,
|
|
dpo_beta,
|
|
reward_model,
|
|
output_dir
|
|
]
|
|
|
|
output_components = [
|
|
output_box,
|
|
process_bar
|
|
]
|
|
|
|
cmd_preview_btn.click(runner.preview_train, input_components, output_components)
|
|
start_btn.click(runner.run_train, input_components, output_components)
|
|
stop_btn.click(runner.set_abort, queue=False)
|
|
|
|
process_bar.change(
|
|
gen_plot, [top_elems["model_name"], top_elems["finetuning_type"], output_dir], loss_viewer, queue=False
|
|
)
|
|
|
|
return dict(
|
|
training_stage=training_stage,
|
|
dataset_dir=dataset_dir,
|
|
dataset=dataset,
|
|
data_preview_btn=data_preview_btn,
|
|
preview_count=preview_count,
|
|
preview_samples=preview_samples,
|
|
close_btn=close_btn,
|
|
max_source_length=max_source_length,
|
|
max_target_length=max_target_length,
|
|
learning_rate=learning_rate,
|
|
num_train_epochs=num_train_epochs,
|
|
max_samples=max_samples,
|
|
batch_size=batch_size,
|
|
gradient_accumulation_steps=gradient_accumulation_steps,
|
|
lr_scheduler_type=lr_scheduler_type,
|
|
max_grad_norm=max_grad_norm,
|
|
val_size=val_size,
|
|
advanced_tab=advanced_tab,
|
|
logging_steps=logging_steps,
|
|
save_steps=save_steps,
|
|
warmup_steps=warmup_steps,
|
|
compute_type=compute_type,
|
|
padding_side=padding_side,
|
|
lora_tab=lora_tab,
|
|
lora_rank=lora_rank,
|
|
lora_dropout=lora_dropout,
|
|
lora_target=lora_target,
|
|
resume_lora_training=resume_lora_training,
|
|
rlhf_tab=rlhf_tab,
|
|
dpo_beta=dpo_beta,
|
|
reward_model=reward_model,
|
|
refresh_btn=refresh_btn,
|
|
cmd_preview_btn=cmd_preview_btn,
|
|
start_btn=start_btn,
|
|
stop_btn=stop_btn,
|
|
output_dir=output_dir,
|
|
output_box=output_box,
|
|
loss_viewer=loss_viewer
|
|
)
|