mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-07-31 10:42:50 +08:00
200 lines
7.7 KiB
Python
200 lines
7.7 KiB
Python
# Copyright 2025 the LlamaFactory team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import gc
|
|
import json
|
|
from typing import Optional
|
|
|
|
import fire
|
|
from tqdm import tqdm
|
|
from transformers import Seq2SeqTrainingArguments
|
|
|
|
from llamafactory.data import get_dataset, get_template_and_fix_tokenizer
|
|
from llamafactory.extras.constants import IGNORE_INDEX
|
|
from llamafactory.extras.misc import get_device_count
|
|
from llamafactory.extras.packages import is_vllm_available
|
|
from llamafactory.hparams import get_infer_args
|
|
from llamafactory.model import load_tokenizer
|
|
|
|
|
|
if is_vllm_available():
|
|
from vllm import LLM, SamplingParams
|
|
from vllm.lora.request import LoRARequest
|
|
|
|
|
|
def vllm_infer(
|
|
model_name_or_path: str,
|
|
adapter_name_or_path: str = None,
|
|
dataset: str = "alpaca_en_demo",
|
|
dataset_dir: str = "data",
|
|
template: str = "default",
|
|
cutoff_len: int = 2048,
|
|
max_samples: Optional[int] = None,
|
|
vllm_config: str = "{}",
|
|
save_name: str = "generated_predictions.jsonl",
|
|
temperature: float = 0.95,
|
|
top_p: float = 0.7,
|
|
top_k: int = 50,
|
|
max_new_tokens: int = 1024,
|
|
repetition_penalty: float = 1.0,
|
|
skip_special_tokens: bool = True,
|
|
default_system: Optional[str] = None,
|
|
enable_thinking: bool = True,
|
|
seed: Optional[int] = None,
|
|
pipeline_parallel_size: int = 1,
|
|
image_max_pixels: int = 768 * 768,
|
|
image_min_pixels: int = 32 * 32,
|
|
video_fps: float = 2.0,
|
|
video_maxlen: int = 128,
|
|
batch_size: int = 1024,
|
|
):
|
|
r"""Perform batch generation using vLLM engine, which supports tensor parallelism.
|
|
|
|
Usage: python vllm_infer.py --model_name_or_path meta-llama/Llama-2-7b-hf --template llama --dataset alpaca_en_demo
|
|
"""
|
|
if pipeline_parallel_size > get_device_count():
|
|
raise ValueError("Pipeline parallel size should be smaller than the number of gpus.")
|
|
|
|
model_args, data_args, _, generating_args = get_infer_args(
|
|
dict(
|
|
model_name_or_path=model_name_or_path,
|
|
adapter_name_or_path=adapter_name_or_path,
|
|
dataset=dataset,
|
|
dataset_dir=dataset_dir,
|
|
template=template,
|
|
cutoff_len=cutoff_len,
|
|
max_samples=max_samples,
|
|
preprocessing_num_workers=16,
|
|
default_system=default_system,
|
|
enable_thinking=enable_thinking,
|
|
vllm_config=vllm_config,
|
|
temperature=temperature,
|
|
top_p=top_p,
|
|
top_k=top_k,
|
|
max_new_tokens=max_new_tokens,
|
|
repetition_penalty=repetition_penalty,
|
|
)
|
|
)
|
|
|
|
training_args = Seq2SeqTrainingArguments(output_dir="dummy_dir")
|
|
tokenizer_module = load_tokenizer(model_args)
|
|
tokenizer = tokenizer_module["tokenizer"]
|
|
template_obj = get_template_and_fix_tokenizer(tokenizer, data_args)
|
|
template_obj.mm_plugin.expand_mm_tokens = False # for vllm generate
|
|
|
|
engine_args = {
|
|
"model": model_args.model_name_or_path,
|
|
"trust_remote_code": True,
|
|
"dtype": model_args.infer_dtype,
|
|
"max_model_len": cutoff_len + max_new_tokens,
|
|
"tensor_parallel_size": (get_device_count() // pipeline_parallel_size) or 1,
|
|
"pipeline_parallel_size": pipeline_parallel_size,
|
|
"disable_log_stats": True,
|
|
"enable_lora": model_args.adapter_name_or_path is not None,
|
|
}
|
|
if template_obj.mm_plugin.__class__.__name__ != "BasePlugin":
|
|
engine_args["limit_mm_per_prompt"] = {"image": 4, "video": 2, "audio": 2}
|
|
|
|
if isinstance(model_args.vllm_config, dict):
|
|
engine_args.update(model_args.vllm_config)
|
|
|
|
llm = LLM(**engine_args)
|
|
|
|
# load datasets
|
|
dataset_module = get_dataset(template_obj, model_args, data_args, training_args, "ppo", **tokenizer_module)
|
|
train_dataset = dataset_module["train_dataset"]
|
|
|
|
sampling_params = SamplingParams(
|
|
repetition_penalty=generating_args.repetition_penalty or 1.0, # repetition_penalty must > 0
|
|
temperature=generating_args.temperature,
|
|
top_p=generating_args.top_p or 1.0, # top_p must > 0
|
|
top_k=generating_args.top_k or -1, # top_k must > 0
|
|
stop_token_ids=template_obj.get_stop_token_ids(tokenizer),
|
|
max_tokens=generating_args.max_new_tokens,
|
|
skip_special_tokens=skip_special_tokens,
|
|
seed=seed,
|
|
)
|
|
if model_args.adapter_name_or_path is not None:
|
|
lora_request = LoRARequest("default", 1, model_args.adapter_name_or_path[0])
|
|
else:
|
|
lora_request = None
|
|
|
|
# Store all results in these lists
|
|
all_prompts, all_preds, all_labels = [], [], []
|
|
|
|
# Add batch process to avoid the issue of too many files opened
|
|
for i in tqdm(range(0, len(train_dataset), batch_size), desc="Processing batched inference"):
|
|
vllm_inputs, prompts, labels = [], [], []
|
|
batch = train_dataset[i : min(i + batch_size, len(train_dataset))]
|
|
|
|
for j in range(len(batch["input_ids"])):
|
|
if batch["images"][j] is not None:
|
|
image = batch["images"][j]
|
|
multi_modal_data = {
|
|
"image": template_obj.mm_plugin._regularize_images(
|
|
image, image_max_pixels=image_max_pixels, image_min_pixels=image_min_pixels
|
|
)["images"]
|
|
}
|
|
elif batch["videos"][j] is not None:
|
|
video = batch["videos"][j]
|
|
multi_modal_data = {
|
|
"video": template_obj.mm_plugin._regularize_videos(
|
|
video,
|
|
image_max_pixels=image_max_pixels,
|
|
image_min_pixels=image_min_pixels,
|
|
video_fps=video_fps,
|
|
video_maxlen=video_maxlen,
|
|
)["videos"]
|
|
}
|
|
elif batch["audios"][j] is not None:
|
|
audio = batch["audios"][j]
|
|
audio_data = template_obj.mm_plugin._regularize_audios(
|
|
audio,
|
|
sampling_rate=16000,
|
|
)
|
|
multi_modal_data = {"audio": zip(audio_data["audios"], audio_data["sampling_rates"])}
|
|
else:
|
|
multi_modal_data = None
|
|
|
|
vllm_inputs.append({"prompt_token_ids": batch["input_ids"][j], "multi_modal_data": multi_modal_data})
|
|
prompts.append(tokenizer.decode(batch["input_ids"][j], skip_special_tokens=skip_special_tokens))
|
|
labels.append(
|
|
tokenizer.decode(
|
|
list(filter(lambda x: x != IGNORE_INDEX, batch["labels"][j])),
|
|
skip_special_tokens=skip_special_tokens,
|
|
)
|
|
)
|
|
|
|
results = llm.generate(vllm_inputs, sampling_params, lora_request=lora_request)
|
|
preds = [result.outputs[0].text for result in results]
|
|
|
|
# Accumulate results
|
|
all_prompts.extend(prompts)
|
|
all_preds.extend(preds)
|
|
all_labels.extend(labels)
|
|
gc.collect()
|
|
|
|
# Write all results at once outside the loop
|
|
with open(save_name, "w", encoding="utf-8") as f:
|
|
for text, pred, label in zip(all_prompts, all_preds, all_labels):
|
|
f.write(json.dumps({"prompt": text, "predict": pred, "label": label}, ensure_ascii=False) + "\n")
|
|
|
|
print("*" * 70)
|
|
print(f"{len(all_prompts)} total generated results have been saved at {save_name}.")
|
|
print("*" * 70)
|
|
|
|
|
|
if __name__ == "__main__":
|
|
fire.Fire(vllm_infer)
|