mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
46 lines
911 B
YAML
46 lines
911 B
YAML
### model
|
|
model_name_or_path: models/llama3-8b-pro
|
|
trust_remote_code: true
|
|
|
|
### method
|
|
stage: sft
|
|
do_train: true
|
|
finetuning_type: freeze
|
|
freeze_trainable_layers: 8
|
|
freeze_trainable_modules: all
|
|
use_llama_pro: true
|
|
|
|
### dataset
|
|
dataset: identity,alpaca_en_demo
|
|
template: llama3
|
|
cutoff_len: 2048
|
|
max_samples: 1000
|
|
overwrite_cache: true
|
|
preprocessing_num_workers: 16
|
|
dataloader_num_workers: 4
|
|
|
|
### output
|
|
output_dir: saves/llama3-8b-pro/freeze/sft
|
|
logging_steps: 10
|
|
save_steps: 500
|
|
plot_loss: true
|
|
overwrite_output_dir: true
|
|
save_only_model: false
|
|
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
|
|
|
### train
|
|
per_device_train_batch_size: 1
|
|
gradient_accumulation_steps: 8
|
|
learning_rate: 1.0e-4
|
|
num_train_epochs: 3.0
|
|
lr_scheduler_type: cosine
|
|
warmup_ratio: 0.1
|
|
bf16: true
|
|
ddp_timeout: 180000000
|
|
|
|
### eval
|
|
# val_size: 0.1
|
|
# per_device_eval_batch_size: 1
|
|
# eval_strategy: steps
|
|
# eval_steps: 500
|