mirror of
https://github.com/hiyouga/LLaMA-Factory.git
synced 2025-08-02 03:32:50 +08:00
49 lines
1.0 KiB
YAML
49 lines
1.0 KiB
YAML
### model
|
|
model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct
|
|
trust_remote_code: true
|
|
|
|
### method
|
|
stage: sft
|
|
do_train: true
|
|
finetuning_type: full
|
|
use_apollo: true
|
|
apollo_layerwise: true # choices: [true, false], use false for DDP training
|
|
apollo_target: all
|
|
apollo_rank: 128
|
|
apollo_scale: 32.0
|
|
apollo_scale_type: channel
|
|
|
|
### dataset
|
|
dataset: identity,alpaca_en_demo
|
|
template: llama3
|
|
cutoff_len: 2048
|
|
max_samples: 1000
|
|
overwrite_cache: true
|
|
preprocessing_num_workers: 16
|
|
dataloader_num_workers: 4
|
|
|
|
### output
|
|
output_dir: saves/llama3-8b/full/sft
|
|
logging_steps: 10
|
|
save_steps: 500
|
|
plot_loss: true
|
|
overwrite_output_dir: true
|
|
save_only_model: false
|
|
report_to: none # choices: [none, wandb, tensorboard, swanlab, mlflow]
|
|
|
|
### train
|
|
per_device_train_batch_size: 1
|
|
gradient_accumulation_steps: 1 # use 1 for layerwise apollo
|
|
learning_rate: 1.0e-5
|
|
num_train_epochs: 3.0
|
|
lr_scheduler_type: cosine
|
|
warmup_ratio: 0.1
|
|
pure_bf16: true
|
|
ddp_timeout: 180000000
|
|
|
|
### eval
|
|
# val_size: 0.1
|
|
# per_device_eval_batch_size: 1
|
|
# eval_strategy: steps
|
|
# eval_steps: 500
|