# coding=utf-8 # Converts the Baichuan2-7B model in the same format as LLaMA2-7B. # Usage: python llamafy_baichuan2.py --baichuan2_json baichuan2.index.json --llama2_json llama2.index.json # --input_dir baichuan2_original --output_dir baichuan2_llamafied # Inspired by: https://huggingface.co/fireballoon/baichuan-llama-7b/blob/main/convert_baichuan_to_llama.py # Converted model: https://huggingface.co/hiyouga/Baichuan2-7B-Base-LLaMAfied import os import fire import json import torch from collections import OrderedDict SHARD_A = "pytorch_model-00001-of-00002.bin" SHARD_B = "pytorch_model-00002-of-00002.bin" def llamafy_baichuan2( baichuan2_json: str, llama2_json: str, input_dir: str, output_dir: str ): weight_shard_a = torch.load(os.path.join(input_dir, SHARD_A), map_location="cpu") weight_shard_b = torch.load(os.path.join(input_dir, SHARD_B), map_location="cpu") baichuan2_state_dict = OrderedDict() baichuan2_state_dict.update(weight_shard_a) baichuan2_state_dict.update(weight_shard_b) llama2_state_dict = OrderedDict() for key, value in baichuan2_state_dict.items(): if "W_pack" in key: llama2_state_dict[key.replace("W_pack", "q_proj")] = value[:4096, :] llama2_state_dict[key.replace("W_pack", "k_proj")] = value[4096:2*4096, :] llama2_state_dict[key.replace("W_pack", "v_proj")] = value[2*4096:, :] elif "lm_head" in key: llama2_state_dict[key] = torch.nn.functional.normalize(value) else: llama2_state_dict[key] = value with open(os.path.join(input_dir, baichuan2_json), "r", encoding="utf-8") as f: baichuan2_index = json.load(f) with open(os.path.join(input_dir, llama2_json), "r", encoding="utf-8") as f: llama2_index = json.load(f) merged_index = OrderedDict() merged_index["metadata"] = baichuan2_index["metadata"] merged_index["weight_map"] = llama2_index["weight_map"] state_dict_a, state_dict_b = OrderedDict(), OrderedDict() for key, value in llama2_state_dict.items(): if merged_index["weight_map"][key] == SHARD_A: state_dict_a[key] = value else: state_dict_b[key] = value os.makedirs(output_dir, exist_ok=True) torch.save(state_dict_a, os.path.join(output_dir, SHARD_A)) torch.save(state_dict_b, os.path.join(output_dir, SHARD_B)) with open(os.path.join(output_dir, "pytorch_model.bin.index.json"), "w", encoding="utf-8") as f: json.dump(merged_index, f) print("Completed!") if __name__ == "__main__": fire.Fire(llamafy_baichuan2)