# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py from copy import deepcopy from peft import PeftModel from typing import TYPE_CHECKING, Optional, List from transformers import Seq2SeqTrainingArguments from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset from llmtuner.extras.constants import IGNORE_INDEX from llmtuner.extras.ploting import plot_loss from llmtuner.tuner.core import generate_model_card, load_model_and_tokenizer from llmtuner.tuner.dpo.collator import DPODataCollatorWithPadding from llmtuner.tuner.dpo.trainer import CustomDPOTrainer if TYPE_CHECKING: from transformers import TrainerCallback from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments def run_dpo( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", callbacks: Optional[List["TrainerCallback"]] = None ): dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="sft") dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm") data_collator = DPODataCollatorWithPadding( tokenizer=tokenizer, pad_to_multiple_of=4, label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id ) training_args_dict = training_args.to_dict() training_args_dict.update(dict(remove_unused_columns=False)) # important for pairwise dataset training_args = Seq2SeqTrainingArguments(**training_args_dict) # Initialize our Trainer trainer = CustomDPOTrainer( beta=finetuning_args.dpo_beta, model=model, ref_model=deepcopy(model) if not isinstance(model, PeftModel) else None, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks, **split_dataset(dataset, data_args, training_args) ) # Training if training_args.do_train: train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and model_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"]) # Evaluation if training_args.do_eval: metrics = trainer.evaluate(metric_key_prefix="eval") trainer.log_metrics("eval", metrics) trainer.save_metrics("eval", metrics) # Create model card if training_args.do_train: if training_args.push_to_hub: trainer.push_to_hub(**generate_model_card(model_args, data_args, finetuning_args)) else: trainer.create_model_card(**generate_model_card(model_args, data_args, finetuning_args))