from dataclasses import asdict, dataclass, field from typing import Any, Dict, Literal, Optional @dataclass class ModelArguments: r""" Arguments pertaining to which model/config/tokenizer we are going to fine-tune or infer. """ model_name_or_path: str = field( metadata={ "help": "Path to the model weight or identifier from huggingface.co/models or modelscope.cn/models." }, ) adapter_name_or_path: Optional[str] = field( default=None, metadata={"help": "Path to the adapter weight or identifier from huggingface.co/models."}, ) cache_dir: Optional[str] = field( default=None, metadata={"help": "Where to store the pre-trained models downloaded from huggingface.co or modelscope.cn."}, ) use_fast_tokenizer: bool = field( default=False, metadata={"help": "Whether or not to use one of the fast tokenizer (backed by the tokenizers library)."}, ) resize_vocab: bool = field( default=False, metadata={"help": "Whether or not to resize the tokenizer vocab and the embedding layers."}, ) split_special_tokens: bool = field( default=False, metadata={"help": "Whether or not the special tokens should be split during the tokenization process."}, ) model_revision: str = field( default="main", metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."}, ) low_cpu_mem_usage: bool = field( default=True, metadata={"help": "Whether or not to use memory-efficient model loading."}, ) quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the model using bitsandbytes."}, ) quantization_type: Literal["fp4", "nf4"] = field( default="nf4", metadata={"help": "Quantization data type to use in int4 training."}, ) double_quantization: bool = field( default=True, metadata={"help": "Whether or not to use double quantization in int4 training."}, ) quantization_device_map: Optional[Literal["auto"]] = field( default=None, metadata={"help": "Device map used to infer the 4-bit quantized model, needs bitsandbytes>=0.43.0."}, ) rope_scaling: Optional[Literal["linear", "dynamic"]] = field( default=None, metadata={"help": "Which scaling strategy should be adopted for the RoPE embeddings."}, ) flash_attn: bool = field( default=False, metadata={"help": "Enable FlashAttention for faster training."}, ) shift_attn: bool = field( default=False, metadata={"help": "Enable shift short attention (S^2-Attn) proposed by LongLoRA."}, ) mixture_of_depths: Optional[Literal["convert", "load"]] = field( default=None, metadata={"help": "Convert the model to mixture-of-depths (MoD) or load the MoD model."}, ) use_unsloth: bool = field( default=False, metadata={"help": "Whether or not to use unsloth's optimization for the LoRA training."}, ) moe_aux_loss_coef: Optional[float] = field( default=None, metadata={"help": "Coefficient of the auxiliary router loss in mixture-of-experts model."}, ) disable_gradient_checkpointing: bool = field( default=False, metadata={"help": "Whether or not to disable gradient checkpointing."}, ) upcast_layernorm: bool = field( default=False, metadata={"help": "Whether or not to upcast the layernorm weights in fp32."}, ) upcast_lmhead_output: bool = field( default=False, metadata={"help": "Whether or not to upcast the output of lm_head in fp32."}, ) infer_backend: Literal["huggingface", "vllm"] = field( default="huggingface", metadata={"help": "Backend engine used at inference."}, ) vllm_maxlen: int = field( default=2048, metadata={"help": "Maximum input length of the vLLM engine."}, ) vllm_gpu_util: float = field( default=0.9, metadata={"help": "The fraction of GPU memory in (0,1) to be used for the vLLM engine."}, ) vllm_enforce_eager: bool = field( default=False, metadata={"help": "Whether or not to disable CUDA graph in the vLLM engine."}, ) offload_folder: str = field( default="offload", metadata={"help": "Path to offload model weights."}, ) use_cache: bool = field( default=True, metadata={"help": "Whether or not to use KV cache in generation."}, ) hf_hub_token: Optional[str] = field( default=None, metadata={"help": "Auth token to log in with Hugging Face Hub."}, ) ms_hub_token: Optional[str] = field( default=None, metadata={"help": "Auth token to log in with ModelScope Hub."}, ) export_dir: Optional[str] = field( default=None, metadata={"help": "Path to the directory to save the exported model."}, ) export_size: int = field( default=1, metadata={"help": "The file shard size (in GB) of the exported model."}, ) export_device: str = field( default="cpu", metadata={"help": "The device used in model export."}, ) export_quantization_bit: Optional[int] = field( default=None, metadata={"help": "The number of bits to quantize the exported model."}, ) export_quantization_dataset: Optional[str] = field( default=None, metadata={"help": "Path to the dataset or dataset name to use in quantizing the exported model."}, ) export_quantization_nsamples: int = field( default=128, metadata={"help": "The number of samples used for quantization."}, ) export_quantization_maxlen: int = field( default=1024, metadata={"help": "The maximum length of the model inputs used for quantization."}, ) export_legacy_format: bool = field( default=False, metadata={"help": "Whether or not to save the `.bin` files instead of `.safetensors`."}, ) export_hub_model_id: Optional[str] = field( default=None, metadata={"help": "The name of the repository if push the model to the Hugging Face hub."}, ) print_param_status: bool = field( default=False, metadata={"help": "For debugging purposes, print the status of the parameters in the model."}, ) def __post_init__(self): self.compute_dtype = None self.device_map = None self.model_max_length = None if self.split_special_tokens and self.use_fast_tokenizer: raise ValueError("`split_special_tokens` is only supported for slow tokenizers.") if self.adapter_name_or_path is not None: # support merging multiple lora weights self.adapter_name_or_path = [path.strip() for path in self.adapter_name_or_path.split(",")] assert self.quantization_bit in [None, 8, 4], "We only accept 4-bit or 8-bit quantization." assert self.export_quantization_bit in [None, 8, 4, 3, 2], "We only accept 2/3/4/8-bit quantization." if self.export_quantization_bit is not None and self.export_quantization_dataset is None: raise ValueError("Quantization dataset is necessary for exporting.") def to_dict(self) -> Dict[str, Any]: return asdict(self)