import torch import inspect from typing import TYPE_CHECKING, Any, Dict, List, Optional, Set, Tuple from transformers.utils import cached_file from transformers.trainer import WEIGHTS_NAME, SAFE_WEIGHTS_NAME from llmtuner.extras.constants import LAYERNORM_NAMES from llmtuner.extras.logging import get_logger from llmtuner.hparams import ModelArguments, FinetuningArguments if TYPE_CHECKING: from transformers.modeling_utils import PreTrainedModel from llmtuner.hparams import DataArguments logger = get_logger(__name__) def dispatch_model(model: "PreTrainedModel") -> "PreTrainedModel": r""" Dispatches a pre-trained model to GPUs with balanced memory. Borrowed from: https://github.com/huggingface/transformers/blob/v4.31.0/src/transformers/modeling_utils.py#L2803 """ if ( getattr(model, "is_loaded_in_8bit", False) # bnb or getattr(model, "is_loaded_in_4bit", False) # bnb or getattr(model.config, "quantization_config", None) # gptq or awq ): # already set on current device return model if torch.cuda.device_count() > 1: from accelerate import dispatch_model from accelerate.utils import infer_auto_device_map, get_balanced_memory if model._no_split_modules is None: raise ValueError("The model class needs to implement the `_no_split_modules` attribute.") kwargs = {"dtype": model.dtype, "no_split_module_classes": model._no_split_modules} max_memory = get_balanced_memory(model, **kwargs) # Make sure tied weights are tied before creating the device map. model.tie_weights() device_map = infer_auto_device_map(model, max_memory=max_memory, **kwargs) return dispatch_model(model, device_map) else: return model.cuda() def find_all_linear_modules( model: "PreTrainedModel", quantization_bit: Optional[int] = None ) -> List[str]: r""" Finds all available modules to apply lora. """ if quantization_bit is not None: import bitsandbytes as bnb linear_cls = bnb.nn.Linear4bit if quantization_bit == 4 else bnb.nn.Linear8bitLt else: linear_cls = torch.nn.Linear output_layer_names = ["lm_head"] if model.config.model_type == "chatglm": output_layer_names.append("output_layer") module_names = set() for name, module in model.named_modules(): if ( isinstance(module, linear_cls) and not any([output_layer in name for output_layer in output_layer_names]) ): module_names.add(name.split(".")[-1]) logger.info("Found linear modules: {}".format(",".join(module_names))) return list(module_names) def get_modelcard_args( model_args: "ModelArguments", data_args: "DataArguments", finetuning_args: "FinetuningArguments" ) -> Dict[str, Any]: return { "tasks": "text-generation", "license": "other", "finetuned_from": model_args.model_name_or_path, "dataset": [dataset.strip() for dataset in data_args.dataset.split(",")], "tags": ["llama-factory"] + (["lora"] if finetuning_args.finetuning_type == "lora" else []) } def load_valuehead_params( path_or_repo_id: str, model_args: "ModelArguments" ) -> Dict[str, torch.Tensor]: r""" Loads value head parameters from Hugging Face Hub or local disk. Returns: dict with keys `v_head.summary.weight` and `v_head.summary.bias`. """ kwargs = { "path_or_repo_id": path_or_repo_id, "cache_dir": model_args.cache_dir } if "token" in inspect.signature(cached_file).parameters: kwargs["token"] = model_args.hf_hub_token elif "use_auth_token" in inspect.signature(cached_file).parameters: # for transformers==4.31.0 kwargs["use_auth_token"] = model_args.hf_hub_token else: logger.warning("Ignore `hf_hub_token` since matched parameter is not found.") try: vhead_file = cached_file(filename=WEIGHTS_NAME, **kwargs) return torch.load(vhead_file, map_location="cpu") except Exception as err: logger.info("Failed to load {}: {}".format(WEIGHTS_NAME, str(err))) try: from safetensors import safe_open vhead_file = cached_file(filename=SAFE_WEIGHTS_NAME, **kwargs) with safe_open(vhead_file, framework="pt", device="cpu") as f: return { "v_head.summary.weight": f.get_tensor("v_head.summary.weight"), "v_head.summary.bias": f.get_tensor("v_head.summary.bias") } except Exception as err: logger.info("Failed to load {}: {}".format(SAFE_WEIGHTS_NAME, str(err))) logger.warning("Provided path ({}) does not contain valuehead weights.".format(path_or_repo_id)) return None def prepare_model_for_training( model: "PreTrainedModel", finetuning_args: "FinetuningArguments", output_layer_name: Optional[str] = "lm_head", use_gradient_checkpointing: Optional[bool] = True, layernorm_names: Optional[Set[str]] = LAYERNORM_NAMES ) -> "PreTrainedModel": r""" Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32 Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33 """ if finetuning_args.upcast_layernorm: for name, param in model.named_parameters(): if param.ndim == 1 and any(ln_name in name for ln_name in layernorm_names): param.data = param.data.to(torch.float32) logger.info("Upcasting weights in layernorm in float32.") if finetuning_args.neft_alpha > 1e-6: def neftune_forward_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor): if module.training: dims = torch.tensor(output.size(1) * output.size(2)) mag_norm = finetuning_args.neft_alpha / torch.sqrt(dims) output = output + torch.zeros_like(output).uniform_(-mag_norm, mag_norm) return output model.get_input_embeddings().register_forward_hook(neftune_forward_hook) logger.info("Using noisy embedding with alpha={:.2f}".format(finetuning_args.neft_alpha)) if use_gradient_checkpointing and getattr(model, "supports_gradient_checkpointing", False): if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) model.gradient_checkpointing_enable() model.config.use_cache = False # turn off when gradient checkpointing is enabled logger.info("Gradient checkpointing enabled.") if finetuning_args.finetuning_type != "full" and hasattr(model, output_layer_name): output_layer = getattr(model, output_layer_name) if isinstance(output_layer, torch.nn.Linear): def fp32_forward_pre_hook(module: torch.nn.Module, args: Tuple[torch.Tensor]): return args[0].to(output_layer.weight.dtype) def fp32_forward_post_hook(module: torch.nn.Module, args: Tuple[torch.Tensor], output: torch.Tensor): return output.to(torch.float32) output_layer.register_forward_pre_hook(fp32_forward_pre_hook) output_layer.register_forward_hook(fp32_forward_post_hook) return model