from typing import TYPE_CHECKING, Dict, List, Optional, Tuple, Union from dataclasses import dataclass from llmtuner.extras.logging import get_logger if TYPE_CHECKING: from transformers import PreTrainedTokenizer logger = get_logger(__name__) @dataclass class Template: prefix: List[Union[str, Dict[str, str]]] prompt: List[Union[str, Dict[str, str]]] sep: List[Union[str, Dict[str, str]]] stop_words: List[str] use_history: bool def encode_oneturn( self, tokenizer: "PreTrainedTokenizer", query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, prefix: Optional[str] = None ) -> Tuple[List[int], List[int]]: r""" Returns a single pair of token ids representing prompt and response respectively. """ prefix, history = self._format(query, resp, history, prefix) encoded_pairs = self._encode(tokenizer, prefix, history) prompt_ids = [] for query_ids, resp_ids in encoded_pairs[:-1]: prompt_ids = prompt_ids + query_ids + resp_ids prompt_ids = prompt_ids + encoded_pairs[-1][0] return prompt_ids, encoded_pairs[-1][1] def encode_multiturn( self, tokenizer: "PreTrainedTokenizer", query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, prefix: Optional[str] = None ) -> List[Tuple[List[int], List[int]]]: r""" Returns multiple pairs of token ids representing prompts and responses respectively. """ prefix, history = self._format(query, resp, history, prefix) encoded_pairs = self._encode(tokenizer, prefix, history) return encoded_pairs def _format( self, query: str, resp: str, history: Optional[List[Tuple[str, str]]] = None, prefix: Optional[str] = None ) -> Tuple[List[Union[str, Dict[str, str]]], List[Tuple[str, str]]]: r""" Aligns inputs to a special format. """ prefix = [prefix] if prefix else self.prefix # use prefix if provided history = history if (history and self.use_history) else [] history = history + [(query, resp)] return prefix, history def _get_special_ids( self, tokenizer: "PreTrainedTokenizer" ) -> Tuple[List[int], List[int]]: if tokenizer.bos_token_id: bos_ids = [tokenizer.bos_token_id] else: bos_ids = [] # bos token is optional if tokenizer.eos_token_id: eos_ids = [tokenizer.eos_token_id] else: raise ValueError("EOS token is required.") return bos_ids, eos_ids def _encode( self, tokenizer: "PreTrainedTokenizer", prefix: List[Union[str, Dict[str, str]]], history: List[Tuple[str, str]] ) -> List[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. """ bos_ids, eos_ids = self._get_special_ids(tokenizer) sep_ids = self._convert_inputs_to_ids(tokenizer, context=self.sep) encoded_pairs = [] for turn_idx, (query, resp) in enumerate(history): if turn_idx != 0: prefix_ids = sep_ids elif prefix: prefix_ids = self._convert_inputs_to_ids(tokenizer, context=prefix) + eos_ids + sep_ids query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query) resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) encoded_pairs.append((bos_ids + prefix_ids + query_ids, resp_ids + eos_ids)) return encoded_pairs def _convert_inputs_to_ids( self, tokenizer: "PreTrainedTokenizer", context: List[Union[str, Dict[str, str]]], query: Optional[str] = "" ) -> List[int]: r""" Converts context to token ids. """ if hasattr(tokenizer, "tokenizer"): # for tiktoken tokenizer (Qwen) kwargs = dict(allowed_special="all") else: kwargs = dict(add_special_tokens=False) token_ids = [] for elem in context: if isinstance(elem, str): elem = elem.replace("{{query}}", query, 1) token_ids = token_ids + tokenizer.encode(elem, **kwargs) elif isinstance(elem, dict): token_ids = token_ids + [tokenizer.convert_tokens_to_ids(elem.get("token"))] else: raise NotImplementedError return token_ids @dataclass class Llama2Template(Template): def _encode( self, tokenizer: "PreTrainedTokenizer", prefix: List[Union[str, Dict[str, str]]], history: List[Tuple[str, str]] ) -> List[Tuple[List[int], List[int]]]: r""" Encodes formatted inputs to pairs of token ids. """ bos_ids, eos_ids = self._get_special_ids(tokenizer) encoded_pairs = [] assert isinstance(prefix[0], str), "LLaMA-2 template only accepts list containing a single str." for turn_idx, (query, resp) in enumerate(history): if turn_idx == 0: # llama2 template has not sep_ids query = prefix[0] + query query_ids = self._convert_inputs_to_ids(tokenizer, context=self.prompt, query=query) resp_ids = self._convert_inputs_to_ids(tokenizer, context=[resp]) encoded_pairs.append((bos_ids + query_ids, resp_ids + eos_ids)) return encoded_pairs templates: Dict[str, Template] = {} def register_template( name: str, prefix: List[Union[str, Dict[str, str]]], prompt: List[Union[str, Dict[str, str]]], sep: List[Union[str, Dict[str, str]]], stop_words: List[str], use_history: bool ) -> None: template_class = Llama2Template if name == "llama2" else Template templates[name] = template_class( prefix=prefix, prompt=prompt, sep=sep, stop_words=stop_words, use_history=use_history ) def get_template_and_fix_tokenizer( name: str, tokenizer: "PreTrainedTokenizer" ) -> Template: template = templates.get(name, None) assert template is not None, "Template {} does not exist.".format(name) if tokenizer.eos_token_id is None: # inplace method if len(template.stop_words): tokenizer.eos_token = template.stop_words[0] else: tokenizer.eos_token = "<|endoftext|>" logger.info("Add eos token: {}".format(tokenizer.eos_token)) if tokenizer.pad_token_id is None: tokenizer.pad_token = tokenizer.eos_token logger.info("Add pad token: {}".format(tokenizer.pad_token)) tokenizer.add_special_tokens(dict(additional_special_tokens=template.stop_words)) return template r""" Supports language model inference without histories. """ register_template( name="vanilla", prefix=[], prompt=[ "{{query}}" ], sep=[], stop_words=[], use_history=False ) r""" Default template. """ register_template( name="default", prefix=[ "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ], prompt=[ "Human: {{query}}\nAssistant: " ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/meta-llama/Llama-2-7b-chat-hf https://huggingface.co/meta-llama/Llama-2-13b-chat-hf https://huggingface.co/meta-llama/Llama-2-70b-chat-hf """ register_template( name="llama2", prefix=[ "<>\nYou are a helpful, respectful and honest assistant. " "Always answer as helpfully as possible, while being safe. " "Your answers should not include any harmful, unethical, " "racist, sexist, toxic, dangerous, or illegal content. " "Please ensure that your responses are socially unbiased and positive in nature.\n" "If a question does not make any sense, or is not factually coherent, " "explain why instead of answering something not correct. " "If you don't know the answer to a question, please don't share false information.\n<>\n\n" ], prompt=[ "[INST] {{query}} [/INST] " ], sep=[], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/tatsu-lab/alpaca-7b-wdiff https://github.com/ymcui/Chinese-LLaMA-Alpaca """ register_template( name="alpaca", prefix=[ "Below is an instruction that describes a task. " "Write a response that appropriately completes the request." ], prompt=[ "### Instruction:\n{{query}}\n\n### Response:\n" ], sep=[ "\n\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/lmsys/vicuna-7b-delta-v1.1 https://huggingface.co/lmsys/vicuna-13b-delta-v1.1 """ register_template( name="vicuna", prefix=[ "A chat between a curious user and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the user's questions." ], prompt=[ "USER: {{query}} ASSISTANT: " ], sep=[], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/BelleGroup/BELLE-LLaMA-EXT-13B """ register_template( name="belle", prefix=[], prompt=[ "Human: {{query}}\n\nBelle: " ], sep=[ "\n\n" ], stop_words=[], use_history=True ) r""" Supports: https://github.com/CVI-SZU/Linly """ register_template( name="linly", prefix=[], prompt=[ "User: {{query}}\nBot: " ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://github.com/Neutralzz/BiLLa """ register_template( name="billa", prefix=[], prompt=[ "Human: {{query}}\nAssistant: " ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/IDEA-CCNL/Ziya-LLaMA-13B-v1 """ register_template( name="ziya", prefix=[], prompt=[ {"token": ""}, ":{{query}}\n", {"token": ""}, ":" ], sep=[ "\n" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/qhduan/aquilachat-7b """ register_template( name="aquila", prefix=[ "A chat between a curious human and an artificial intelligence assistant. " "The assistant gives helpful, detailed, and polite answers to the human's questions." ], prompt=[ "Human: {{query}}###Assistant: " ], sep=[ "###" ], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/internlm/internlm-chat-7b """ register_template( name="intern", prefix=[], prompt=[ "<|User|>:{{query}}", {"token": ""}, "\n<|Bot|>:" ], sep=[ "\n" ], stop_words=[ "" ], use_history=True ) r""" Supports: https://huggingface.co/baichuan-inc/Baichuan-13B-Chat """ register_template( name="baichuan", prefix=[], prompt=[ {"token": ""}, "{{query}}", {"token": ""} ], sep=[], stop_words=[], use_history=True ) r""" Supports: https://huggingface.co/HuggingFaceH4/starchat-alpha https://huggingface.co/HuggingFaceH4/starchat-beta """ register_template( name="starchat", prefix=[ {"token": "<|system|>"}, "\n" ], prompt=[ {"token": "<|user|>"}, "\n{{query}}", {"token": "<|end|>"}, "\n", {"token": "<|assistant|>"} ], sep=[ "\n" ], stop_words=[ "<|end|>" ], use_history=True ) r""" Supports: https://huggingface.co/Qwen/Qwen-7B-Chat """ register_template( name="chatml", prefix=[ {"token": "<|im_start|>"}, "system\nYou are a helpful assistant." ], prompt=[ {"token": "<|im_start|>"}, "user\n{{query}}", {"token": "<|im_end|>"}, "\n", {"token": "<|im_start|>"}, "assistant\n" ], sep=[ "\n" ], stop_words=[ "<|im_end|>" ], use_history=True )