import torch from types import MethodType from typing import TYPE_CHECKING, List, Optional from llmtuner.extras.constants import LAYERNORM_NAMES if TYPE_CHECKING: from transformers.modeling_utils import PreTrainedModel from llmtuner.hparams import FinetuningArguments def find_all_linear_modules( model: "PreTrainedModel", quantization_bit: Optional[int] = None, output_layer_name: Optional[str] = "lm_head" ) -> List[str]: if quantization_bit is not None: import bitsandbytes as bnb linear_cls = bnb.nn.Linear4bit if quantization_bit == 4 else bnb.nn.Linear8bitLt else: linear_cls = torch.nn.Linear module_names = set() for name, module in model.named_modules(): if output_layer_name not in name and isinstance(module, linear_cls): module_names.add(name.split(".")[-1]) if output_layer_name in module_names: module_names.pop(output_layer_name) return list(module_names) def prepare_model_for_training( model: "PreTrainedModel", finetuning_args: "FinetuningArguments", output_layer_name: Optional[str] = "lm_head", use_gradient_checkpointing: Optional[bool] = True, layernorm_names: Optional[List[str]] = LAYERNORM_NAMES ) -> "PreTrainedModel": r""" Includes: (1) cast the layernorm in fp32 (2) make output embedding layer require grads (3) upcast the lm_head to fp32 Inspired by: https://github.com/huggingface/peft/blob/v0.2.0/src/peft/utils/other.py#L33 """ if finetuning_args.upcast_layernorm: for name, param in model.named_parameters(): if param.ndim == 1 and any(ln_name in name for ln_name in layernorm_names): param.data = param.data.to(torch.float32) if finetuning_args.neft_alpha > 1e-6: input_embed: torch.nn.Embedding = model.get_input_embeddings() def noisy_forward(self: torch.nn.Embedding, x: torch.Tensor) -> torch.Tensor: embeddings = torch.nn.Embedding.forward(self, x) if self.training: dims = self.num_embeddings * self.embedding_dim mag_norm = finetuning_args.neft_alpha / (dims ** 0.5) embeddings += torch.zeros_like(embeddings).uniform_(-mag_norm, mag_norm) return embeddings input_embed.forward = MethodType(noisy_forward, input_embed) if use_gradient_checkpointing: if hasattr(model, "enable_input_require_grads"): model.enable_input_require_grads() else: def make_inputs_require_grad(module: torch.nn.Module, input: torch.Tensor, output: torch.Tensor): output.requires_grad_(True) model.get_input_embeddings().register_forward_hook(make_inputs_require_grad) model.gradient_checkpointing_enable() model.config.use_cache = False # turn off when gradient checkpointing is enabled if finetuning_args.finetuning_type != "full" and hasattr(model, output_layer_name): output_layer: torch.nn.Linear = getattr(model, output_layer_name) input_dtype = output_layer.weight.dtype def forward_in_fp32(self, x: torch.Tensor) -> torch.Tensor: return torch.nn.Linear.forward(self, x.to(input_dtype)).to(torch.float32) output_layer.forward = MethodType(forward_in_fp32, output_layer) return model