# Copyright 2025 the KVCache.AI team, Approaching AI, and the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from typing import TYPE_CHECKING, Optional from ...data import SFTDataCollatorWith4DAttentionMask, get_dataset, get_template_and_fix_tokenizer from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from ...extras.misc import calculate_tps from ...extras.ploting import plot_loss from ...model import load_model, load_tokenizer from ..trainer_utils import create_modelcard_and_push if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from ...hparams import DataArguments, FinetuningArguments, GeneratingArguments, ModelArguments logger = get_logger(__name__) def run_sft( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", generating_args: "GeneratingArguments", callbacks: Optional[list["TrainerCallback"]] = None, ): tokenizer_module = load_tokenizer(model_args) tokenizer = tokenizer_module["tokenizer"] template = get_template_and_fix_tokenizer(tokenizer, data_args) dataset_module = get_dataset(template, model_args, data_args, training_args, stage="sft", **tokenizer_module) model = load_model(tokenizer, model_args, finetuning_args, training_args.do_train) from ktransformers.util.globals import GLOBAL_CONFIG GLOBAL_CONFIG._config["mod"] = "sft" if getattr(model, "is_quantized", False) and not training_args.do_train: setattr(model, "_hf_peft_config_loaded", True) # hack here: make model compatible with prediction data_collator = SFTDataCollatorWith4DAttentionMask( template=template, model=model if not training_args.predict_with_generate else None, pad_to_multiple_of=8 if training_args.do_train else None, # for shift short attention label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id, block_diag_attn=model_args.block_diag_attn, attn_implementation=getattr(model.config, "_attn_implementation", None), compute_dtype=model_args.compute_dtype, **tokenizer_module, ) # Metric utils metric_module = {} if training_args.predict_with_generate: raise NotImplementedError("`predict_with_generate` is not supported in KTransformers SFT yet.") elif finetuning_args.compute_accuracy: raise NotImplementedError("`compute_accuracy` is not supported in KTransformers SFT yet.") # Initialize our Trainer from ktransformers.sft.lora import KTrainer trainer = KTrainer( model=model, args=training_args, tokenizer=tokenizer_module, data_collator=data_collator, callbacks=callbacks, **dataset_module, **metric_module, ) trainer.model_accepts_loss_kwargs = False # Training if training_args.do_train: model.config.use_cache = False train_result = trainer.train(resume_from_checkpoint=training_args.resume_from_checkpoint) trainer.save_model() if finetuning_args.include_effective_tokens_per_second: train_result.metrics["effective_tokens_per_sec"] = calculate_tps( dataset_module["train_dataset"], train_result.metrics, stage="sft" ) trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() if trainer.is_world_process_zero() and finetuning_args.plot_loss: keys = ["loss"] if isinstance(dataset_module.get("eval_dataset"), dict): keys += sum( [[f"eval_{key}_loss", f"eval_{key}_accuracy"] for key in dataset_module["eval_dataset"].keys()], [] ) else: keys += ["eval_loss", "eval_accuracy"] plot_loss(training_args.output_dir, keys=keys) # Create model card create_modelcard_and_push(trainer, model_args, data_args, training_args, finetuning_args)