### model model_name_or_path: meta-llama/Meta-Llama-3-8B-Instruct trust_remote_code: true ### method stage: sft do_train: true finetuning_type: lora lora_target: all ### dataset dataset_dir: /home/ray/default/LLaMA-Factory/data/ dataset: identity,alpaca_en_demo template: llama3 cutoff_len: 2048 max_samples: 1000 overwrite_cache: true preprocessing_num_workers: 16 ### output output_dir: saves/llama3-8b/lora/sft logging_steps: 10 save_steps: 500 plot_loss: true overwrite_output_dir: true ### train per_device_train_batch_size: 1 gradient_accumulation_steps: 8 learning_rate: 1.0e-4 num_train_epochs: 3.0 lr_scheduler_type: cosine warmup_ratio: 0.1 bf16: true ddp_timeout: 180000000 ### eval val_size: 0.1 per_device_eval_batch_size: 1 eval_strategy: steps eval_steps: 500 ### ray setup resources_per_worker: GPU: 1 num_workers: 4 # placement_strategy: ...