import inspect import math import re from copy import deepcopy from io import BytesIO from typing import TYPE_CHECKING, Dict, List, Optional, Sequence, Tuple, TypedDict, Union import numpy as np import torch from transformers.image_utils import get_image_size, to_numpy_array from typing_extensions import override from ..extras.constants import AUDIO_PLACEHOLDER, IGNORE_INDEX, IMAGE_PLACEHOLDER, VIDEO_PLACEHOLDER from ..extras.packages import ( is_librosa_available, is_pillow_available, is_pyav_available, is_transformers_version_greater_than, ) if is_librosa_available(): import librosa if is_pillow_available(): from PIL import Image from PIL.Image import Image as ImageObject if is_pyav_available(): import av if is_transformers_version_greater_than("4.45.0"): from transformers.models.mllama.processing_mllama import ( convert_sparse_cross_attention_mask_to_dense, get_cross_attention_token_mask, ) if TYPE_CHECKING: from av.stream import Stream from numpy.typing import NDArray from transformers import PreTrainedTokenizer, ProcessorMixin from transformers.feature_extraction_sequence_utils import SequenceFeatureExtractor from transformers.image_processing_utils import BaseImageProcessor class EncodedImage(TypedDict): path: Optional[str] bytes: Optional[bytes] ImageInput = Union[str, bytes, EncodedImage, ImageObject] VideoInput = str AudioInput = Union[str, NDArray] def _get_paligemma_token_type_ids( imglens: Sequence[int], seqlens: Sequence[int], processor: "ProcessorMixin" ) -> List[List[int]]: r""" Gets paligemma token type ids for computing loss. Returns: batch_token_type_ids: shape (batch_size, sequence_length) """ batch_token_type_ids = [] for imglen, seqlen in zip(imglens, seqlens): image_seqlen = imglen * getattr(processor, "image_seqlen") batch_token_type_ids.append([0] * image_seqlen + [1] * (seqlen - image_seqlen)) return batch_token_type_ids class BasePlugin: def __init__(self, image_token: Optional[str], video_token: Optional[str], audio_token: Optional[str]) -> None: self.image_token = image_token self.video_token = video_token self.audio_token = audio_token self.expand_mm_tokens = True def _validate_input( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], ) -> None: r""" Validates if this model accepts the input modalities. """ if len(images) != 0 and self.image_token is None: raise ValueError( "This model does not support image input. Please check whether the correct `template` is used." ) if len(videos) != 0 and self.video_token is None: raise ValueError( "This model does not support video input. Please check whether the correct `template` is used." ) if len(audios) != 0 and self.audio_token is None: raise ValueError( "This model does not support audio input. Please check whether the correct `template` is used." ) def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject": r""" Pre-processes a single image. """ image_resolution: int = kwargs["image_resolution"] if (image.width * image.height) > image_resolution: resize_factor = math.sqrt(image_resolution / (image.width * image.height)) width, height = int(image.width * resize_factor), int(image.height * resize_factor) image = image.resize((width, height), resample=Image.Resampling.NEAREST) if image.mode != "RGB": image = image.convert("RGB") return image def _get_video_sample_indices(self, video_stream: "Stream", **kwargs) -> List[int]: r""" Computes video sample indices according to fps. """ video_fps: float = kwargs["video_fps"] video_maxlen: int = kwargs["video_maxlen"] total_frames = video_stream.frames if total_frames == 0: # infinite video return np.linspace(0, video_maxlen - 1, video_maxlen).astype(np.int32) sample_frames = math.floor(float(video_stream.duration * video_stream.time_base) * video_fps) sample_frames = min(total_frames, video_maxlen, sample_frames) return np.linspace(0, total_frames - 1, sample_frames).astype(np.int32) def _regularize_images(self, images: Sequence["ImageInput"], **kwargs) -> List["ImageObject"]: r""" Regularizes images to avoid error. Including reading and pre-processing. """ results = [] for image in images: if isinstance(image, str): image = Image.open(image) elif isinstance(image, bytes): image = Image.open(BytesIO(image)) elif isinstance(image, dict): if image["bytes"] is not None: image = Image.open(BytesIO(image["bytes"])) else: image = Image.open(image["path"]) if not isinstance(image, ImageObject): raise ValueError(f"Expect input is a list of images, but got {type(image)}.") results.append(self._preprocess_image(image, **kwargs)) return results def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> List[List["ImageObject"]]: r""" Regularizes videos to avoid error. Including reading, resizing and converting. """ results = [] for video in videos: container = av.open(video, "r") video_stream = next(stream for stream in container.streams if stream.type == "video") sample_indices = self._get_video_sample_indices(video_stream, **kwargs) frames: List["ImageObject"] = [] container.seek(0) for frame_idx, frame in enumerate(container.decode(video_stream)): if frame_idx in sample_indices: frames.append(frame.to_image()) frames = self._regularize_images(frames, **kwargs) results.append(frames) return results def _regularize_audios(self, audios: Sequence["AudioInput"], **kwargs) -> List["NDArray"]: r""" Regularizes audios to avoid error. Including reading and resampling. """ results = [] sampling_rate = kwargs["sampling_rate"] for audio in audios: if isinstance(audio, str): audio = librosa.load(audio, sr=sampling_rate)[0] if not isinstance(audio, np.ndarray): raise ValueError(f"Expect input is a list of audios, but got {type(audio)}.") results.append(audio) return results def _get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: "ProcessorMixin", ) -> Dict[str, "torch.Tensor"]: r""" Processes visual inputs. Returns: (llava and paligemma) pixel_values: tensor with shape (B, C, H, W) Returns: (qwen2-vl) pixel_values: tensor with shape (num_patches, patch_dim) image_grid_thw: tensor with shape (num_images, 3), where the three numbers are time, width, height It holds num_patches == torch.prod(image_grid_thw) """ image_processor: "BaseImageProcessor" = getattr(processor, "image_processor", None) video_processor: "BaseImageProcessor" = getattr(processor, "video_processor", image_processor) feature_extractor: "SequenceFeatureExtractor" = getattr(processor, "feature_extractor", None) mm_inputs = {} if len(images) != 0: images = self._regularize_images( images, image_resolution=getattr(processor, "image_resolution", 768 * 768), ) mm_inputs.update(image_processor(images, return_tensors="pt")) if len(videos) != 0: videos = self._regularize_videos( videos, image_resolution=getattr(processor, "video_resolution", 256 * 256), video_fps=getattr(processor, "video_fps", 2.0), video_maxlen=getattr(processor, "video_maxlen", 128), ) if "videos" in inspect.signature(video_processor.preprocess).parameters: # qwen2vl processor mm_inputs.update(video_processor(images=None, videos=videos, return_tensors="pt")) else: mm_inputs.update(video_processor(videos, return_tensors="pt")) if len(audios) != 0: audios = self._regularize_audios( audios, sampling_rate=getattr(feature_extractor, "sampling_rate", 16000), ) mm_inputs.update( feature_extractor( audios, sampling_rate=getattr(feature_extractor, "sampling_rate", 16000), return_attention_mask=True, padding="max_length", return_tensors="pt", ) ) mm_inputs["feature_attention_mask"] = mm_inputs.pop("attention_mask") # prevent conflicts return mm_inputs def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: r""" Pre-processes input messages before tokenization for VLMs. """ self._validate_input(images, videos, audios) return messages def process_token_ids( self, input_ids: List[int], labels: Optional[List[int]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], ) -> Tuple[List[int], Optional[List[int]]]: r""" Pre-processes token ids after tokenization for VLMs. """ self._validate_input(images, videos, audios) return input_ids, labels def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: r""" Builds batched multimodal inputs for VLMs. Arguments: images: a list of image inputs, shape (num_images,) videos: a list of video inputs, shape (num_videos,) imglens: number of images in each sample, shape (batch_size,) vidlens: number of videos in each sample, shape (batch_size,) audlens: number of audios in each sample, shape (batch_size,) batch_ids: token ids of input samples, shape (batch_size, seq_len) processor: a processor for pre-processing images and videos """ self._validate_input(images, videos, audios) return {} class LlavaPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) num_image_tokens = 0 image_seqlen = getattr(processor, "image_seqlen") if self.expand_mm_tokens else 1 messages = deepcopy(messages) for message in messages: content = message["content"] while IMAGE_PLACEHOLDER in content: content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1) num_image_tokens += 1 message["content"] = content.replace("{{image}}", self.image_token) if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") return messages @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) return self._get_mm_inputs(images, videos, audios, processor) class LlavaNextPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) num_image_tokens = 0 messages = deepcopy(messages) mm_inputs = self._get_mm_inputs(images, videos, audios, processor) if "image_sizes" in mm_inputs: image_sizes = iter(mm_inputs["image_sizes"]) if "pixel_values" in mm_inputs: height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0])) for message in messages: content = message["content"] while IMAGE_PLACEHOLDER in content: if self.expand_mm_tokens: orig_height, orig_width = next(image_sizes) image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width) if getattr(processor, "vision_feature_select_strategy", "default") == "default": image_seqlen -= 1 else: image_seqlen = 1 content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1) num_image_tokens += 1 message["content"] = content.replace("{{image}}", self.image_token) if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") return messages @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) return self._get_mm_inputs(images, videos, audios, processor) class LlavaNextVideoPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) num_image_tokens, num_video_tokens = 0, 0 messages = deepcopy(messages) mm_inputs = self._get_mm_inputs(images, videos, audios, processor) if "pixel_values" in mm_inputs: image_sizes = iter(mm_inputs["image_sizes"]) height, width = get_image_size(to_numpy_array(mm_inputs["pixel_values"][0][0])) for message in messages: content = message["content"] while IMAGE_PLACEHOLDER in content: if self.expand_mm_tokens: orig_height, orig_width = next(image_sizes) image_seqlen = processor._get_number_of_features(orig_height, orig_width, height, width) if getattr(processor, "vision_feature_select_strategy", "default") == "default": image_seqlen -= 1 else: image_seqlen = 1 content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1) num_image_tokens += 1 message["content"] = content.replace("{{image}}", self.image_token) if "pixel_values_videos" in mm_inputs: pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0]) height, width = get_image_size(pixel_values_video[0]) num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim image_seqlen = (height // processor.patch_size) * (width // processor.patch_size) video_seqlen = image_seqlen // 4 * num_frames # divide by 4 needed for avg pooling layer video_seqlen = video_seqlen if self.expand_mm_tokens else 1 for message in messages: content = message["content"] while VIDEO_PLACEHOLDER in content: num_video_tokens += 1 content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1) message["content"] = content.replace("{{video}}", self.video_token) if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") if len(videos) != num_video_tokens: raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.") return messages @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) return self._get_mm_inputs(images, videos, audios, processor) class MiniCPMVPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) num_image_tokens = 0 num_video_tokens = 0 num_audio_tokens = 0 messages = deepcopy(messages) image_processor: "BaseImageProcessor" = getattr(processor, "image_processor") mm_inputs = {} audio_inputs = {} audio_parts = [] if len(images) != 0 and len(videos) != 0: raise ValueError("MiniCPM-V model does not support input images and videos at the same time.") if len(videos) != 0: max_slice_nums = 2 use_image_id = False mm_inputs = self._get_mm_inputs([], videos, [], processor) else: max_slice_nums = image_processor.max_slice_nums use_image_id = image_processor.use_image_id for i, message in enumerate(messages): content = message["content"] while IMAGE_PLACEHOLDER in content: content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1) num_image_tokens += 1 while VIDEO_PLACEHOLDER in content: video_seqlen = len(mm_inputs["pixel_values"][num_video_tokens]) if self.expand_mm_tokens else 1 content = content.replace(VIDEO_PLACEHOLDER, "{{image}}" * video_seqlen, 1) num_video_tokens += 1 while AUDIO_PLACEHOLDER in content: audio_parts.append(i) content = content.replace(AUDIO_PLACEHOLDER, "{{audio}}", 1) num_audio_tokens += 1 message["content"] = content.replace("{{image}}", "(./)").replace( "{{audio}}", "()" ) if num_image_tokens > 0: mm_inputs = self._get_mm_inputs(images, [], [], processor) if num_audio_tokens > 0: audio_parts_ls = [audio_parts] audio_inputs = self._get_mm_inputs([], [], audios, processor, audio_parts_ls=audio_parts_ls, ret_phs=True) if mm_inputs: pattern = "(./)" image_sizes = mm_inputs["image_sizes"] for index, message in enumerate(messages): text = message["content"] image_tags = re.findall(pattern, text) text_chunks = text.split(pattern) final_text = "" for i in range(len(image_tags)): final_text = ( final_text + text_chunks[i] + image_processor.get_slice_image_placeholder( image_sizes[0][i], i, max_slice_nums, use_image_id ) ) final_text += text_chunks[-1] messages[index]["content"] = final_text if audio_inputs: pattern = "()" for index, message in enumerate(messages): text = message["content"] audio_tags = re.findall(pattern, text) text_chunks = text.split(pattern) final_text = "" for i in range(len(audio_tags)): audio_placeholder = audio_inputs["audio_phs"][0][i] final_text = final_text + text_chunks[i] + audio_placeholder final_text += text_chunks[-1] messages[index]["content"] = final_text if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") if len(videos) != num_video_tokens: raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.") if len(audios) != num_audio_tokens: raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.") return messages @override def _get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: "ProcessorMixin", **kwargs, ) -> Dict[str, "torch.Tensor"]: image_processor: "BaseImageProcessor" = getattr(processor, "image_processor") mm_inputs = {} if len(images) != 0: images = self._regularize_images( images, image_resolution=getattr(processor, "image_resolution", 768 * 768), ) if "valid_image_nums_ls" in kwargs: valid_image_nums_ls = kwargs["valid_image_nums_ls"] new_images = [] idx = 0 for valid_image_nums in valid_image_nums_ls: new_images.append(images[idx : idx + valid_image_nums]) idx += valid_image_nums images = new_images image_inputs = image_processor( images, do_pad=True, max_slice_nums=image_processor.max_slice_nums, return_tensors="pt" ) mm_inputs.update(image_inputs) if len(videos) != 0: videos = self._regularize_videos( videos, image_resolution=getattr(processor, "video_resolution", 256 * 256), video_fps=getattr(processor, "video_fps", 2.0), video_maxlen=getattr(processor, "video_maxlen", 128), ) video_inputs = image_processor(videos, do_pad=True, max_slice_nums=2, return_tensors="pt") mm_inputs.update(video_inputs) if len(audios) != 0: audio_parts_ls = kwargs.get("audio_parts_ls", None) new_audios = [] for audio in audios: if not isinstance(audio, np.ndarray): audio = librosa.load(audio, sr=processor.feature_extractor.sampling_rate)[0] new_audios.append(audio) audios_ls = [] idx = 0 for audio_parts in audio_parts_ls: audios_ls.append(new_audios[idx : idx + len(audio_parts)]) idx += len(audio_parts) audio_features, audio_feature_lens, audio_phs = processor.audio_feature_extract( audios_ls, audio_parts_ls, chunk_input=True, sampling_rate=16000, ) mm_inputs.update({"audio_features": audio_features, "audio_feature_lens": audio_feature_lens}) if kwargs.get("ret_phs", False): mm_inputs.update({"audio_phs": audio_phs}) return mm_inputs @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) # image bound image_bounds_list = [] valid_image_nums_ls = [] for i, input_ids in enumerate(batch_ids): input_ids_ = torch.tensor(input_ids) start_cond = (input_ids_ == processor.tokenizer.im_start_id) | ( input_ids_ == processor.tokenizer.slice_start_id ) end_cond = (input_ids_ == processor.tokenizer.im_end_id) | (input_ids_ == processor.tokenizer.slice_end_id) image_start_tokens = torch.where(start_cond)[0] image_start_tokens += 1 image_end_tokens = torch.where(end_cond)[0] valid_image_nums_ls.append(imglens[i]) image_bounds = torch.hstack( [ image_start_tokens.unsqueeze(-1), image_end_tokens.unsqueeze(-1), ] ) image_bounds_list.append(image_bounds) mm_inputs = self._get_mm_inputs(images, videos, [], processor, valid_image_nums_ls=valid_image_nums_ls) if "tgt_sizes" not in mm_inputs: dummy_data = [torch.empty(0) for _ in range(len(batch_ids))] mm_inputs.update({"tgt_sizes": dummy_data, "pixel_values": dummy_data, "image_sizes": dummy_data}) mm_inputs.update({"image_bound": image_bounds_list}) if len(audios) > 0: # audio bound audio_bounds_ls = [] spk_bounds_ls = [] audio_parts_ls = [] for input_ids, audiolen in zip(batch_ids, audlens): input_ids_ = torch.tensor(input_ids) audio_start_idx = torch.where(input_ids_ == processor.tokenizer.audio_start_id)[0] audio_end_idx = torch.where(input_ids_ == processor.tokenizer.audio_end_id)[0] assert len(audio_start_idx) == len(audio_end_idx) audio_bounds = torch.hstack([(audio_start_idx + 1).unsqueeze(-1), audio_end_idx.unsqueeze(-1)]) audio_bounds_ls.append(audio_bounds) audio_parts_ls.append(list(range(audiolen))) spk_start_idx = torch.where(input_ids_ == processor.tokenizer.spk_start_id)[0] spk_end_idx = torch.where(input_ids_ == processor.tokenizer.spk_end_id)[0] assert len(spk_start_idx) == len(spk_end_idx) spk_bounds = torch.hstack([(spk_start_idx + 1).unsqueeze(-1), spk_end_idx.unsqueeze(-1)]) spk_bounds_ls.append(spk_bounds) audio_inputs = self._get_mm_inputs([], [], audios, processor, audio_parts_ls=audio_parts_ls) mm_inputs.update(audio_inputs) mm_inputs.update({"audio_bounds": audio_bounds_ls, "spk_bounds": spk_bounds_ls}) return mm_inputs class MllamaPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) num_image_tokens = 0 messages = deepcopy(messages) for message in messages: content = message["content"] num_image_tokens += content.count(IMAGE_PLACEHOLDER) message["content"] = content.replace(IMAGE_PLACEHOLDER, self.image_token) if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") return messages @override def _get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: "ProcessorMixin", **kwargs, ) -> Dict[str, "torch.Tensor"]: r""" Processes visual inputs for mllama because its image processor only accepts List[List[ImageInput]]. Returns: pixel_values: tensor with shape (batch_size, max_num_images, max_image_tiles, channels, tile_height, tile_width) For example, (2, 1, 4, 3, 560, 560). aspect_ratio_ids: tensor with shape (batch_size, max_num_images). For example, (2, 1). aspect_ratio_mask: tensor with shape (batch_size, max_num_images, max_image_tiles). For example, (2, 1, 4). num_tiles: List[List[int]] with shape (batch_size, num_images_in_batch). For example, (2, 1). """ image_processor: "BaseImageProcessor" = getattr(processor, "image_processor") imglens: List[int] = kwargs["imglens"] images = self._regularize_images(images, image_resolution=getattr(processor, "image_resolution", 768 * 768)) batch_images = [] for image_length in imglens: batch_images.append(images[:image_length]) images = images[image_length:] return image_processor(batch_images, return_tensors="pt") @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) mm_inputs = self._get_mm_inputs(images, videos, audios, processor, imglens=imglens) num_tiles = mm_inputs.pop("num_tiles") image_token_id = getattr(processor, "image_token_id") max_image_tiles = getattr(processor.image_processor, "max_image_tiles") cross_attention_token_mask = [ get_cross_attention_token_mask(input_ids, image_token_id) for input_ids in batch_ids ] mm_inputs["cross_attention_mask"] = torch.from_numpy( convert_sparse_cross_attention_mask_to_dense( cross_attention_token_mask, num_tiles=num_tiles, max_num_tiles=max_image_tiles, length=max(len(input_ids) for input_ids in batch_ids), ) ) # shape: (batch_size, length, max_num_images, max_num_tiles) return mm_inputs class PaliGemmaPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) num_image_tokens = 0 messages = deepcopy(messages) for message in messages: content = message["content"] while IMAGE_PLACEHOLDER in content: content = content.replace(IMAGE_PLACEHOLDER, "{{image}}", 1) num_image_tokens += 1 message["content"] = content.replace("{{image}}", "") if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") return messages @override def process_token_ids( self, input_ids: List[int], labels: Optional[List[int]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], ) -> Tuple[List[int], Optional[List[int]]]: self._validate_input(images, videos, audios) num_images = len(images) image_seqlen = num_images * getattr(processor, "image_seqlen") if self.expand_mm_tokens else 0 # skip mm token image_token_id = tokenizer.convert_tokens_to_ids(self.image_token) input_ids = [image_token_id] * image_seqlen + input_ids if labels is not None: labels = [IGNORE_INDEX] * image_seqlen + labels return input_ids, labels @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) seqlens = [len(input_ids) for input_ids in batch_ids] mm_inputs = self._get_mm_inputs(images, videos, audios, processor) mm_inputs["token_type_ids"] = _get_paligemma_token_type_ids(imglens, seqlens, processor) return mm_inputs class PixtralPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) patch_size = getattr(processor, "patch_size") image_token = getattr(processor, "image_token") image_break_token = getattr(processor, "image_break_token") image_end_token = getattr(processor, "image_end_token") num_image_tokens = 0 messages = deepcopy(messages) mm_inputs = self._get_mm_inputs(images, videos, audios, processor) image_input_sizes = mm_inputs.get("image_sizes", None) for message in messages: content = message["content"] while IMAGE_PLACEHOLDER in content: if image_input_sizes is None: raise ValueError("Cannot get image input sizes.") if self.expand_mm_tokens: image_size = image_input_sizes[0][num_image_tokens] height, width = image_size num_height_tokens = height // patch_size num_width_tokens = width // patch_size replace_tokens = [[image_token] * num_width_tokens + [image_break_token]] * num_height_tokens replace_tokens = [item for sublist in replace_tokens for item in sublist] # flatten list replace_tokens[-1] = image_end_token replace_str = "".join(replace_tokens) else: replace_str = image_token content = content.replace(IMAGE_PLACEHOLDER, replace_str, 1) num_image_tokens += 1 message["content"] = content if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") return messages @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) mm_inputs = self._get_mm_inputs(images, videos, audios, processor) if mm_inputs.get("pixel_values"): mm_inputs["pixel_values"] = mm_inputs["pixel_values"][0] mm_inputs.pop("image_sizes", None) return mm_inputs class Qwen2AudioPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) bos_token: str = getattr(processor, "audio_bos_token") eos_token: str = getattr(processor, "audio_eos_token") mm_inputs = self._get_mm_inputs([], [], audios, processor) if "feature_attention_mask" in mm_inputs: audio_lengths = mm_inputs["feature_attention_mask"].sum(-1).tolist() num_audio_tokens = 0 for message in messages: content = message["content"] while AUDIO_PLACEHOLDER in content: audio_length = audio_lengths.pop(0) input_length = (audio_length - 1) // 2 + 1 audio_seqlen = (input_length - 2) // 2 + 1 if self.expand_mm_tokens else 1 content = content.replace( AUDIO_PLACEHOLDER, f"{bos_token}{self.audio_token * audio_seqlen}{eos_token}", 1 ) num_audio_tokens += 1 message["content"] = content if len(audios) != num_audio_tokens: raise ValueError(f"The number of audios does not match the number of {AUDIO_PLACEHOLDER} tokens.") return messages @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) return self._get_mm_inputs(images, videos, audios, processor) class Qwen2vlPlugin(BasePlugin): @override def _preprocess_image(self, image: "ImageObject", **kwargs) -> "ImageObject": image = super()._preprocess_image(image, **kwargs) if min(image.width, image.height) < 28: width, height = max(image.width, 28), max(image.height, 28) image = image.resize((width, height), resample=Image.Resampling.NEAREST) if image.width / image.height > 200: width, height = image.height * 180, image.height image = image.resize((width, height), resample=Image.Resampling.NEAREST) if image.height / image.width > 200: width, height = image.width, image.width * 180 image = image.resize((width, height), resample=Image.Resampling.NEAREST) return image @override def _regularize_videos(self, videos: Sequence["VideoInput"], **kwargs) -> List[List["ImageObject"]]: results = [] for video in videos: container = av.open(video, "r") video_stream = next(stream for stream in container.streams if stream.type == "video") sample_indices = self._get_video_sample_indices(video_stream, **kwargs) frames: List["ImageObject"] = [] container.seek(0) for frame_idx, frame in enumerate(container.decode(video_stream)): if frame_idx in sample_indices: frames.append(frame.to_image()) if len(frames) % 2 != 0: # qwen2-vl requires even number of frames frames.append(frames[-1]) frames = self._regularize_images(frames, **kwargs) results.append(frames) return results @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) image_processor: "BaseImageProcessor" = getattr(processor, "image_processor") merge_length: int = getattr(image_processor, "merge_size") ** 2 mm_inputs = self._get_mm_inputs(images, videos, audios, processor) image_grid_thw = mm_inputs.get("image_grid_thw", []) video_grid_thw = mm_inputs.get("video_grid_thw", []) num_image_tokens, num_video_tokens = 0, 0 messages = deepcopy(messages) for message in messages: content = message["content"] while IMAGE_PLACEHOLDER in content: if num_image_tokens >= len(image_grid_thw): raise ValueError(f"`len(images)` is less than the number of {IMAGE_PLACEHOLDER} tokens.") image_seqlen = image_grid_thw[num_image_tokens].prod() // merge_length if self.expand_mm_tokens else 1 content = content.replace( IMAGE_PLACEHOLDER, f"<|vision_start|>{self.image_token * image_seqlen}<|vision_end|>", 1 ) num_image_tokens += 1 while VIDEO_PLACEHOLDER in content: if num_video_tokens >= len(video_grid_thw): raise ValueError(f"`len(videos)` is less than the number of {VIDEO_PLACEHOLDER} tokens.") video_seqlen = video_grid_thw[num_video_tokens].prod() // merge_length if self.expand_mm_tokens else 1 content = content.replace( VIDEO_PLACEHOLDER, f"<|vision_start|>{self.video_token * video_seqlen}<|vision_end|>", 1 ) num_video_tokens += 1 message["content"] = content if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") if len(videos) != num_video_tokens: raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.") return messages @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) mm_inputs = self._get_mm_inputs(images, videos, audios, processor) image_processor: "BaseImageProcessor" = getattr(processor, "image_processor") if "second_per_grid_ts" in getattr(image_processor, "model_input_names", []) and "video_grid_thw" in mm_inputs: video_fps = getattr(processor, "video_fps", 2.0) mm_inputs["second_per_grid_ts"] = [image_processor.temporal_patch_size / video_fps] * len( mm_inputs["video_grid_thw"] ) return mm_inputs class VideoLlavaPlugin(BasePlugin): @override def process_messages( self, messages: Sequence[Dict[str, str]], images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], processor: Optional["ProcessorMixin"], ) -> List[Dict[str, str]]: self._validate_input(images, videos, audios) num_image_tokens, num_video_tokens = 0, 0 messages = deepcopy(messages) mm_inputs = self._get_mm_inputs(images, videos, audios, processor) num_frames = 0 has_images = "pixel_values_images" in mm_inputs has_videos = "pixel_values_videos" in mm_inputs if has_images or has_videos: if self.expand_mm_tokens: if has_images: height, width = get_image_size(to_numpy_array(mm_inputs.get("pixel_values_images")[0])) num_frames = 1 if has_videos: pixel_values_video = to_numpy_array(mm_inputs.get("pixel_values_videos")[0]) height, width = get_image_size(pixel_values_video[0]) num_frames = pixel_values_video.shape[0] # frame dim is always after batch dim image_seqlen = (height // processor.patch_size) * (width // processor.patch_size) + 1 video_seqlen = image_seqlen * num_frames if getattr(processor, "vision_feature_select_strategy", "default") == "default": image_seqlen -= 1 else: image_seqlen, video_seqlen = 1, 1 for message in messages: content = message["content"] while IMAGE_PLACEHOLDER in content: content = content.replace(IMAGE_PLACEHOLDER, "{{image}}" * image_seqlen, 1) num_image_tokens += 1 while VIDEO_PLACEHOLDER in content: content = content.replace(VIDEO_PLACEHOLDER, "{{video}}" * video_seqlen, 1) num_video_tokens += 1 content = content.replace("{{image}}", self.image_token) message["content"] = content.replace("{{video}}", self.video_token) if len(images) != num_image_tokens: raise ValueError(f"The number of images does not match the number of {IMAGE_PLACEHOLDER} tokens.") if len(videos) != num_video_tokens: raise ValueError(f"The number of videos does not match the number of {VIDEO_PLACEHOLDER} tokens.") return messages @override def get_mm_inputs( self, images: Sequence["ImageInput"], videos: Sequence["VideoInput"], audios: Sequence["AudioInput"], imglens: Sequence[int], vidlens: Sequence[int], audlens: Sequence[int], batch_ids: Sequence[List[int]], processor: Optional["ProcessorMixin"], ) -> Dict[str, Union[List[int], "torch.Tensor"]]: self._validate_input(images, videos, audios) return self._get_mm_inputs(images, videos, audios, processor) PLUGINS = { "base": BasePlugin, "llava": LlavaPlugin, "llava_next": LlavaNextPlugin, "llava_next_video": LlavaNextVideoPlugin, "minicpm_v": MiniCPMVPlugin, "mllama": MllamaPlugin, "paligemma": PaliGemmaPlugin, "pixtral": PixtralPlugin, "qwen2_audio": Qwen2AudioPlugin, "qwen2_vl": Qwen2vlPlugin, "video_llava": VideoLlavaPlugin, } def get_mm_plugin( name: str, image_token: Optional[str] = None, video_token: Optional[str] = None, audio_token: Optional[str] = None, ) -> "BasePlugin": plugin_class = PLUGINS.get(name, None) if plugin_class is None: raise ValueError(f"Multimodal plugin `{name}` not found.") return plugin_class(image_token, video_token, audio_token)