from typing import TYPE_CHECKING, Tuple import torch from ...extras.logging import get_logger if TYPE_CHECKING: from transformers import PretrainedConfig, PreTrainedModel from ...hparams import ModelArguments logger = get_logger(__name__) def configure_hidden_size(config: "PretrainedConfig") -> None: if getattr(config, "model_type", None) == "llava": setattr(config, "hidden_size", getattr(config.text_config, "hidden_size", None)) def autocast_projector_dtype( model: "PreTrainedModel", model_args: "ModelArguments", mm_projector_name: str = "multi_modal_projector" ) -> None: def _mm_projector_forward_post_hook( module: "torch.nn.Module", args: Tuple["torch.Tensor"], output: "torch.Tensor" ) -> "torch.Tensor": return output.to(model_args.compute_dtype) if hasattr(model, mm_projector_name) and getattr(model.config, "quantization_method", None): logger.info("Casting multimodal projector outputs in {}.".format(model_args.compute_dtype)) mm_projector: "torch.nn.Module" = getattr(model, mm_projector_name) mm_projector.register_forward_hook(_mm_projector_forward_post_hook)