import os import torch from typing import TYPE_CHECKING, Dict, Optional from transformers import Seq2SeqTrainer from transformers.trainer import TRAINING_ARGS_NAME, WEIGHTS_NAME from transformers.modeling_utils import PreTrainedModel, unwrap_model from peft import PeftModel from trl import PreTrainedModelWrapper from llmtuner.extras.constants import FINETUNING_ARGS_NAME, VALUE_HEAD_FILE_NAME from llmtuner.extras.logging import get_logger from llmtuner.extras.save_and_load import get_state_dict, load_trainable_params if TYPE_CHECKING: from llmtuner.hparams import FinetuningArguments logger = get_logger(__name__) class PeftTrainer(Seq2SeqTrainer): r""" Inherits Seq2SeqTrainer to support parameter-efficient checkpoints. """ def __init__(self, finetuning_args: "FinetuningArguments", **kwargs): super().__init__(**kwargs) self.finetuning_args = finetuning_args self._remove_log() def _remove_log(self): if self.is_world_process_zero() and os.path.exists(os.path.join(self.args.output_dir, "trainer_log.jsonl")): logger.warning("Previous log file in this folder will be deleted.") os.remove(os.path.join(self.args.output_dir, "trainer_log.jsonl")) def _save(self, output_dir: Optional[str] = None, state_dict: Optional[Dict[str, torch.Tensor]] = None) -> None: r""" Saves trainable parameters as model checkpoint. This function will only be executed at the process zero. Subclass and override to inject custom behavior. It should not be directly used by external scripts. """ output_dir = output_dir if output_dir is not None else self.args.output_dir os.makedirs(output_dir, exist_ok=True) logger.info(f"Saving model checkpoint to {output_dir}") model = unwrap_model(self.model) if isinstance(model, PreTrainedModelWrapper): # Custom state dict: https://github.com/lvwerra/trl/blob/v0.4.7/trl/models/modeling_value_head.py#L200 model_state_dict = state_dict or model.state_dict() v_head_state_dict = { name.replace("v_head.", ""): model_state_dict[name].cpu().clone().detach() for name in model_state_dict.keys() if name.startswith("v_head.") } torch.save(v_head_state_dict, os.path.join(output_dir, VALUE_HEAD_FILE_NAME)) model = model.pretrained_model state_dict = state_dict or get_state_dict(model) if isinstance(model, (PeftModel, PreTrainedModel)): model.config.use_cache = True model.save_pretrained(output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors) model.config.use_cache = False else: torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME)) if self.finetuning_args.finetuning_type == "full" and self.tokenizer is not None: self.tokenizer.save_pretrained(output_dir) with open(os.path.join(output_dir, TRAINING_ARGS_NAME), "w", encoding="utf-8") as f: f.write(self.args.to_json_string() + "\n") self.finetuning_args.save_to_json(os.path.join(output_dir, FINETUNING_ARGS_NAME)) def _load_best_model(self): r""" Loads trainable parameters from model checkpoint. Subclass and override to inject custom behavior. It should not be directly used by external scripts. """ logger.info(f"Loading best model from {self.state.best_model_checkpoint} (score: {self.state.best_metric}).") model = unwrap_model(self.model) if isinstance(model, PreTrainedModelWrapper): model.v_head.load_state_dict(torch.load( os.path.join(self.state.best_model_checkpoint, VALUE_HEAD_FILE_NAME), map_location="cpu" )) model = model.pretrained_model if isinstance(model, PeftModel): model.load_adapter(self.state.best_model_checkpoint, model.active_adapter) else: # freeze/full-tuning load_trainable_params(model, self.state.best_model_checkpoint)