import itertools from collections import defaultdict from typing import TYPE_CHECKING, Any, Dict, List, Optional from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from .mm_utils import get_paligemma_token_type_ids, get_pixel_values if TYPE_CHECKING: from transformers import ProcessorMixin from transformers.tokenization_utils import PreTrainedTokenizer from ...hparams import DataArguments from ..template import Template logger = get_logger(__name__) def binary_search_for_fit(numbers, capacity): """ Perform binary search to find the largest number that fits into the knapsack with the given capacity. """ left, right = 0, len(numbers) - 1 result = -1 # If no number fits, return -1 while left <= right: mid = (left + right) // 2 if numbers[mid] <= capacity: result = mid left = mid + 1 else: right = mid - 1 return result def efficient_greedy_knapsack(numbers, capacity): """ An efficient greedy algorithm with binary search for the knapsack problem. """ numbers.sort() # Sort numbers in ascending order for binary search knapsacks = [] while numbers: current_knapsack = [] remaining_capacity = capacity while True: index = binary_search_for_fit(numbers, remaining_capacity) if index == -1: break # No more numbers fit in this knapsack # Add the found number to the knapsack and update the remaining capacity current_knapsack.append(numbers[index]) remaining_capacity -= numbers[index] # Remove the number from the list numbers.pop(index) knapsacks.append(current_knapsack) return knapsacks def preprocess_supervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X Y ` and labels with format ` ... Y ` # for multiturn examples, we only mask the prompt part in each prompt-response pair. model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} if processor is not None: model_inputs["pixel_values"] = [] if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"] = [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"] messages = examples["prompt"][i] + examples["response"][i] input_ids, labels = [], [] if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) input_ids += [image_token_id] * getattr(processor, "image_seq_length") labels += [IGNORE_INDEX] * getattr(processor, "image_seq_length") for turn_idx, (source_ids, target_ids) in enumerate( template.encode_multiturn( tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len, data_args.reserved_label_len, ) ): if data_args.train_on_prompt: source_mask = source_ids elif turn_idx != 0 and template.efficient_eos: source_mask = [tokenizer.eos_token_id] + [IGNORE_INDEX] * (len(source_ids) - 1) else: source_mask = [IGNORE_INDEX] * len(source_ids) input_ids += source_ids + target_ids labels += source_mask + target_ids if template.efficient_eos: input_ids += [tokenizer.eos_token_id] labels += [tokenizer.eos_token_id] model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) if processor is not None: model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) return model_inputs def preprocess_packed_supervised_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # build inputs with format ` X1 Y1 X2 Y2 ` # and labels with format ` ... Y1 ... Y2 ` model_inputs = {"input_ids": [], "attention_mask": [], "labels": []} input_ids, labels = [], [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) != 1: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue messages = examples["prompt"][i] + examples["response"][i] for source_ids, target_ids in template.encode_multiturn( tokenizer, messages, examples["system"][i], examples["tools"][i] ): if data_args.train_on_prompt: source_mask = source_ids else: source_mask = [IGNORE_INDEX] * len(source_ids) input_ids.append(source_ids + target_ids) labels.append(source_mask + target_ids) # prepare for packing lengths = [] length2examples_idx = defaultdict(list) for idx, example in enumerate(input_ids): length = len(example) if length > data_args.cutoff_len: logger.warning("Dropped example with length {} > cutoff_len {}".format(length, data_args.cutoff_len)) continue lengths.append(length) length2examples_idx[length].append(idx) # cutoff_len - 1 for efficient_eos knapsacks = efficient_greedy_knapsack(lengths, data_args.cutoff_len - int(template.efficient_eos)) for knapsack in knapsacks: packed_input_ids = [] packed_labels = [] total_length = 0 for length in knapsack: total_length += length idx = length2examples_idx[length].pop() packed_input_ids.append(input_ids[idx]) packed_labels.append(labels[idx]) # padding to cutoff_len if total_length < data_args.cutoff_len: pad_length = data_args.cutoff_len - total_length if template.efficient_eos: # 确保有 eos packed_input_ids.append([tokenizer.eos_token_id] * pad_length) packed_labels.append([tokenizer.eos_token_id] + [IGNORE_INDEX] * (pad_length - 1)) else: # 无 eos 的情况下,使用 0 填充? packed_input_ids.append([0] * pad_length) packed_labels.append([tokenizer.eos_token_id] + [IGNORE_INDEX] * (pad_length - 1)) elif total_length == data_args.cutoff_len: pad_length = 0 else: logger.warning( "Dropped packed example with total length {} > cutoff_len {}".format( total_length, data_args.cutoff_len ) ) continue # concat all model_inputs["input_ids"].append(list(itertools.chain(*packed_input_ids))) model_inputs["labels"].append(list(itertools.chain(*packed_labels))) model_inputs["attention_mask"].append([1] * total_length + [0] * pad_length) return model_inputs def print_supervised_dataset_example(example: Dict[str, List[int]], tokenizer: "PreTrainedTokenizer") -> None: valid_labels = list(filter(lambda x: x != IGNORE_INDEX, example["labels"])) print("input_ids:\n{}".format(example["input_ids"])) print("inputs:\n{}".format(tokenizer.decode(example["input_ids"], skip_special_tokens=False))) print("label_ids:\n{}".format(example["labels"])) print("labels:\n{}".format(tokenizer.decode(valid_labels, skip_special_tokens=False)))