# Inspired by: https://github.com/huggingface/trl/blob/main/examples/research_projects/stack_llama_2/scripts/dpo_llama2.py from copy import deepcopy from peft import PeftModel from typing import TYPE_CHECKING, Optional, List from llmtuner.dsets import get_dataset, preprocess_dataset, split_dataset from llmtuner.extras.constants import IGNORE_INDEX from llmtuner.extras.ploting import plot_loss from llmtuner.tuner.core import load_model_and_tokenizer from llmtuner.tuner.dpo.collator import DPODataCollatorWithPadding from llmtuner.tuner.dpo.trainer import DPOPeftTrainer if TYPE_CHECKING: from transformers import Seq2SeqTrainingArguments, TrainerCallback from llmtuner.hparams import ModelArguments, DataArguments, FinetuningArguments, GeneratingArguments def run_dpo( model_args: "ModelArguments", data_args: "DataArguments", training_args: "Seq2SeqTrainingArguments", finetuning_args: "FinetuningArguments", generating_args: "GeneratingArguments", callbacks: Optional[List["TrainerCallback"]] = None ): dataset = get_dataset(model_args, data_args) model, tokenizer = load_model_and_tokenizer(model_args, finetuning_args, training_args.do_train, stage="sft") dataset = preprocess_dataset(dataset, tokenizer, data_args, training_args, stage="rm") data_collator = DPODataCollatorWithPadding( tokenizer=tokenizer, label_pad_token_id=IGNORE_INDEX if data_args.ignore_pad_token_for_loss else tokenizer.pad_token_id ) training_args.remove_unused_columns = False # important for pairwise dataset ref_model = deepcopy(model) if not isinstance(model, PeftModel) else None # Initialize our Trainer trainer = DPOPeftTrainer( finetuning_args=finetuning_args, generating_args=generating_args, ref_model=ref_model, model=model, args=training_args, tokenizer=tokenizer, data_collator=data_collator, callbacks=callbacks, **split_dataset(dataset, data_args, training_args) ) # Training if training_args.do_train: train_result = trainer.train() trainer.log_metrics("train", train_result.metrics) trainer.save_metrics("train", train_result.metrics) trainer.save_state() trainer.save_model() if trainer.is_world_process_zero() and model_args.plot_loss: plot_loss(training_args.output_dir, keys=["loss", "eval_loss"])