# coding=utf-8 # Copyright 2024 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License import torch from transformers import AutoConfig import fire def model_flops_counter( batch_size: int, seqlen: int, model_config: dict, is_backward: bool = True, is_recompute: bool = False, is_flashattn: bool = False, ) -> float: """ calculate the FLOPs of model per iteration """ hidden_size = model_config.hidden_size num_attention_heads = model_config.num_attention_heads num_key_value_heads = model_config.num_key_value_heads vocab_size = model_config.vocab_size intermediate_size = model_config.intermediate_size num_hidden_layers = model_config.num_hidden_layers """ B: batch_size S: seqlen L: num_hidden_layers H: hidden_size V: vocab_size I: intermediate_size """ ### MLP calculation per_mlp_calculation = 2 * hidden_size * intermediate_size mlp_calculation_per_layer = per_mlp_calculation * 3 mlp_calculation = batch_size * seqlen * mlp_calculation_per_layer * num_hidden_layers ### Attention calculation Q_calculation = 2 * hidden_size * hidden_size O_calculation = 2 * hidden_size * hidden_size K_calculation = 2 * hidden_size * hidden_size * num_key_value_heads / num_attention_heads V_calculation = 2 * hidden_size * hidden_size * num_key_value_heads / num_attention_heads QKVO_calculation = Q_calculation + O_calculation + K_calculation + V_calculation # 8H^2 / coe self_attn_calculation = seqlen * hidden_size * 2 * 2 # (4 * S * H) attention_calculation = batch_size * seqlen * num_hidden_layers * (QKVO_calculation + self_attn_calculation) # BSL(8H^2/coe + 4S * H) #Embedding and LMhead calculation embedding_calculation = hidden_size * vocab_size lmhead_calculation = hidden_size * vocab_size IO_calculation = 3 * batch_size * seqlen * (embedding_calculation + lmhead_calculation) # 2 *(1+2)BSHV E = attention_calculation + mlp_calculation coefficient = 3 fix_term = 0 if(is_recompute): coefficient = 4 if(is_flashattn): fix_term = batch_size *seqlen * self_attn_calculation total_calculation = coefficient * E + IO_calculation + fix_term return total_calculation def hardware_flops_counter( seconds: float, # seconds used in given iterations num_gpus: int = 1, ) -> float: if "A100" in torch.cuda.get_device_name(): return 312 * 1e12 * seconds * num_gpus elif "V100" in torch.cuda.get_device_name(): return 125 * 1e12 * seconds * num_gpus def compute_mfu( batch_size: int, seqlen: int, model_config: dict, num_iter: int, seconds: float, num_gpus: int = 1, ) -> float: """ compute MFU given model configuration, training config and training information """ percentage = (num_iter * model_flops_counter(batch_size,seqlen,model_config)) / hardware_flops_counter(seconds, num_gpus) print(f"MFU : {percentage* 100:.2f}%") return percentage # User input ### model_name model_name = "meta-llama/Meta-Llama-3-8B-Instruct" ### training config batch_size = 8 seqlen = 1*1024 num_gpus = 1 ### training information num_iter = 225 seconds = 605 # time used in {num_iter} iterations model_config = AutoConfig.from_pretrained(model_name) if __name__ == "__main__": fire.Fire( compute_mfu( batch_size=batch_size, seqlen=seqlen, model_config=model_config, num_iter=num_iter, seconds=seconds, num_gpus=num_gpus ) )