from gradio.components import Component # cannot use TYPE_CHECKING here from typing import TYPE_CHECKING, Any, Dict, Generator, List, Optional, Tuple from llmtuner.chat.stream_chat import ChatModel from llmtuner.extras.misc import torch_gc from llmtuner.hparams import GeneratingArguments from llmtuner.webui.common import get_save_dir from llmtuner.webui.locales import ALERTS if TYPE_CHECKING: from llmtuner.webui.manager import Manager class WebChatModel(ChatModel): def __init__(self, manager: "Manager", lazy_init: Optional[bool] = True) -> None: self.manager = manager self.model = None self.tokenizer = None self.generating_args = GeneratingArguments() if not lazy_init: super().__init__() @property def loaded(self) -> bool: return self.model is not None def load_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]: get = lambda name: data[self.manager.get_elem(name)] lang = get("top.lang") if self.loaded: yield ALERTS["err_exists"][lang] return if not get("top.model_name"): yield ALERTS["err_no_model"][lang] return if not get("top.model_path"): yield ALERTS["err_no_path"][lang] return if get("top.checkpoints"): checkpoint_dir = ",".join([ get_save_dir(get("top.model_name"), get("top.finetuning_type"), ckpt) for ckpt in get("top.checkpoints") ]) else: checkpoint_dir = None yield ALERTS["info_loading"][lang] args = dict( model_name_or_path=get("top.model_path"), checkpoint_dir=checkpoint_dir, finetuning_type=get("top.finetuning_type"), quantization_bit=int(get("top.quantization_bit")) if get("top.quantization_bit") in ["8", "4"] else None, template=get("top.template"), system_prompt=get("top.system_prompt"), flash_attn=get("top.flash_attn"), shift_attn=get("top.shift_attn"), rope_scaling=get("top.rope_scaling") if get("top.rope_scaling") in ["linear", "dynamic"] else None ) super().__init__(args) yield ALERTS["info_loaded"][lang] def unload_model(self, data: Dict[Component, Any]) -> Generator[str, None, None]: get = lambda name: data[self.manager.get_elem(name)] lang = get("top.lang") yield ALERTS["info_unloading"][lang] self.model = None self.tokenizer = None torch_gc() yield ALERTS["info_unloaded"][lang] def predict( self, chatbot: List[Tuple[str, str]], query: str, history: List[Tuple[str, str]], system: str, max_new_tokens: int, top_p: float, temperature: float ) -> Generator[Tuple[List[Tuple[str, str]], List[Tuple[str, str]]], None, None]: chatbot.append([query, ""]) response = "" for new_text in self.stream_chat( query, history, system, max_new_tokens=max_new_tokens, top_p=top_p, temperature=temperature ): response += new_text new_history = history + [(query, response)] chatbot[-1] = [query, self.postprocess(response)] yield chatbot, new_history def postprocess(self, response: str) -> str: blocks = response.split("```") for i, block in enumerate(blocks): if i % 2 == 0: blocks[i] = block.replace("<", "<").replace(">", ">") return "```".join(blocks)