# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from unittest.mock import MagicMock, patch import pytest from transformers import AutoModelForCausalLM from llamafactory.v1.accelerator.helper import get_current_accelerator from llamafactory.v1.plugins.model_plugins.kernels.mlp import npu_swiglu from llamafactory.v1.plugins.model_plugins.kernels.registry import apply_available_kernels, apply_kernel from llamafactory.v1.plugins.model_plugins.kernels.rms_norm import npu_rms_norm from llamafactory.v1.plugins.model_plugins.kernels.rope import npu_rope @pytest.fixture(autouse=True) def clear_accelerator_cache(): get_current_accelerator.cache_clear() @patch("torch.accelerator.current_accelerator") def test_apply_kernel(mock_get_accelerator: MagicMock): mock_device = MagicMock() setattr(mock_device, "type", "npu") mock_get_accelerator.return_value = mock_device model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5") original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward original_swiglu_forward = model.model.layers[0].mlp.forward apply_kernel(model, npu_rope.NpuRoPEKernel) model = apply_kernel(model, npu_rms_norm.NpuRMSNormKernel) assert model.model.layers[0].input_layernorm is not original_rmsnorm_forward model = apply_kernel(model, npu_swiglu.NpuSwiGluKernel) assert model.model.layers[0].mlp.forward is not original_swiglu_forward @patch("torch.accelerator.current_accelerator") def test_apply_all_kernels(mock_get_accelerator: MagicMock): get_current_accelerator.cache_clear() mock_device = MagicMock() setattr(mock_device, "type", "npu") mock_get_accelerator.return_value = mock_device model = AutoModelForCausalLM.from_pretrained("llamafactory/tiny-random-qwen2.5") original_rmsnorm_forward = model.model.layers[0].input_layernorm.forward original_swiglu_forward = model.model.layers[0].mlp.forward model = apply_available_kernels(model) assert model.model.layers[0].input_layernorm is not original_rmsnorm_forward assert model.model.layers[0].mlp.forward is not original_swiglu_forward