from typing import TYPE_CHECKING, Any, Dict, List, Optional from ...extras.constants import IGNORE_INDEX from ...extras.logging import get_logger from .mm_utils import get_paligemma_token_type_ids, get_pixel_values if TYPE_CHECKING: from transformers import ProcessorMixin from transformers.tokenization_utils import PreTrainedTokenizer from ...hparams import DataArguments from ..template import Template logger = get_logger(__name__) def preprocess_feedback_dataset( examples: Dict[str, List[Any]], template: "Template", tokenizer: "PreTrainedTokenizer", processor: Optional["ProcessorMixin"], data_args: "DataArguments", ) -> Dict[str, List[List[int]]]: # create unrelated input-output pairs for estimating the KL term by flipping the matched pairs kl_response = examples["response"][::-1] model_inputs = { "input_ids": [], "attention_mask": [], "labels": [], "kl_input_ids": [], "kl_attention_mask": [], "kl_labels": [], "kto_tags": [], } if processor is not None: model_inputs["pixel_values"] = [] if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"] = [] model_inputs["kl_token_type_ids"] = [] for i in range(len(examples["prompt"])): if len(examples["prompt"][i]) % 2 != 1 or len(examples["response"][i]) < 2: logger.warning("Dropped invalid example: {}".format(examples["prompt"][i] + examples["response"][i])) continue if processor is not None and not hasattr(processor, "image_seq_length"): # llava-like models examples["prompt"][i][0]["content"] = template.image_token + examples["prompt"][i][0]["content"] if examples["response"][i][0]["content"]: # desired example kto_tag = True messages = examples["prompt"][i] + [examples["response"][i][0]] else: # undesired example kto_tag = False messages = examples["prompt"][i] + [examples["response"][i][1]] if kl_response[i][0]["content"]: kl_messages = examples["prompt"][i] + [kl_response[i][0]] else: kl_messages = examples["prompt"][i] + [kl_response[i][1]] prompt_ids, response_ids = template.encode_oneturn( tokenizer, messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len, data_args.reserved_label_len, ) _, kl_response_ids = template.encode_oneturn( tokenizer, kl_messages, examples["system"][i], examples["tools"][i], data_args.cutoff_len, data_args.reserved_label_len, ) if template.efficient_eos: response_ids += [tokenizer.eos_token_id] kl_response_ids += [tokenizer.eos_token_id] if processor is not None and hasattr(processor, "image_seq_length"): # paligemma models image_token_id = tokenizer.convert_tokens_to_ids(template.image_token) prompt_ids = [image_token_id] * getattr(processor, "image_seq_length") + prompt_ids input_ids = prompt_ids + response_ids labels = [IGNORE_INDEX] * len(prompt_ids) + response_ids kl_input_ids = prompt_ids + kl_response_ids kl_labels = [IGNORE_INDEX] * len(prompt_ids) + kl_response_ids model_inputs["input_ids"].append(input_ids) model_inputs["attention_mask"].append([1] * len(input_ids)) model_inputs["labels"].append(labels) model_inputs["kl_input_ids"].append(kl_input_ids) model_inputs["kl_attention_mask"].append([1] * len(kl_input_ids)) model_inputs["kl_labels"].append(kl_labels) model_inputs["kto_tags"].append(kto_tag) if processor is not None: model_inputs["pixel_values"].append(get_pixel_values(examples["images"][i], processor)) if hasattr(processor, "image_seq_length"): # paligemma models model_inputs["token_type_ids"].append(get_paligemma_token_type_ids(len(input_ids), processor)) model_inputs["kl_token_type_ids"].append(get_paligemma_token_type_ids(len(kl_input_ids), processor)) desirable_num = sum([1 for tag in model_inputs["kto_tags"] if tag]) undesirable_num = len(model_inputs["kto_tags"]) - desirable_num if desirable_num == 0 or undesirable_num == 0: logger.warning("Your dataset only has one preference type.") return model_inputs