# Copyright 2025 the LlamaFactory team. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import pathlib import sys from unittest.mock import patch from llamafactory.v1.config.arg_parser import get_args def test_get_args_from_yaml(tmp_path: pathlib.Path): config_yaml = """ ### model model: "llamafactory/tiny-random-qwen2.5" trust_remote_code: true use_fast_processor: true model_class: "llm" kernel_config: name: "auto" include_kernels: "auto" # choice: null/true/false/auto/kernel_id1,kernel_id2,kernel_id3, default is null peft_config: name: "lora" lora_rank: 0.8 quant_config: null ### data dataset: "llamafactory/tiny-supervised-dataset" cutoff_len: 2048 ### training output_dir: "outputs/test_run" micro_batch_size: 1 global_batch_size: 1 learning_rate: 1.0e-4 bf16: false dist_config: null ### sample sample_backend: "hf" max_new_tokens: 128 """ config_file = tmp_path / "config.yaml" config_file.write_text(config_yaml, encoding="utf-8") test_argv = ["test_args_parser.py", str(config_file)] with patch.object(sys, "argv", test_argv): data_args, model_args, training_args, sample_args = get_args() assert training_args.output_dir == "outputs/test_run" assert training_args.micro_batch_size == 1 assert training_args.global_batch_size == 1 assert training_args.learning_rate == 1.0e-4 assert training_args.bf16 is False assert training_args.dist_config is None assert model_args.model == "llamafactory/tiny-random-qwen2.5" assert model_args.kernel_config.name == "auto" assert model_args.kernel_config.get("include_kernels") == "auto" assert model_args.peft_config.name == "lora" assert model_args.peft_config.get("lora_rank") == 0.8