# coding=utf-8 # Converts the InternLM2 model in the same format as LLaMA2. # Usage: python llamafy_internlm2.py --input_dir input --output_dir output --shard_size 10GB import os import fire import json import torch from tqdm import tqdm from collections import OrderedDict from safetensors.torch import save_file from transformers.modeling_utils import ( shard_checkpoint, SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, WEIGHTS_NAME, WEIGHTS_INDEX_NAME ) from typing import Any, Dict, Optional CONFIG_NAME = "config.json" def save_weight( input_dir: str, output_dir: str, shard_size: str, save_safetensors: bool ): with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: internlm2_config_dict: Dict[str, Any] = json.load(f) internlm2_state_dict: Dict[str, torch.Tensor] = OrderedDict() for filepath in tqdm(os.listdir(input_dir), desc="Load weights"): if os.path.isfile(os.path.join(input_dir, filepath)) and filepath.endswith(".bin"): shard_weight = torch.load(os.path.join(input_dir, filepath), map_location="cpu") internlm2_state_dict.update(shard_weight) llama2_state_dict: Dict[str, torch.Tensor] = OrderedDict() for key, value in tqdm(internlm2_state_dict.items(), desc="Convert format"): if "output" in key: llama2_state_dict["lm_head"] = value elif "tok_embeddings" in key: llama2_state_dict["embed_tokens"] = value elif "attention_norm" in key: llama2_state_dict[key.replace("attention_norm", "input_layernorm")] = value elif "wqkv" in key: proj_size = value.size(0) num_q_heads = internlm2_config_dict["num_attention_heads"] num_kv_heads = internlm2_config_dict["num_key_value_heads"] q_size = proj_size // (num_q_heads + 2 * num_kv_heads) * num_q_heads kv_size = proj_size // (num_q_heads + 2 * num_kv_heads) * num_kv_heads llama2_state_dict[key.replace("attention.wqkv", "self_attn.q_proj")] = value[:q_size, ...] llama2_state_dict[key.replace("attention.wqkv", "self_attn.k_proj")] = value[q_size:q_size+kv_size, ...] llama2_state_dict[key.replace("attention.wqkv", "self_attn.v_proj")] = value[q_size+kv_size:, ...] elif "wo" in key: llama2_state_dict[key.replace("attention.wo", "self_attn.o_proj")] = value elif "ffn_norm" in key: llama2_state_dict[key.replace("ffn_norm", "post_attention_layernorm")] = value elif "w1" in key: llama2_state_dict[key.replace("feed_forward.w1", "mlp.gate_proj")] = value elif "w2" in key: llama2_state_dict[key.replace("feed_forward.w2", "mlp.down_proj")] = value elif "w3" in key: llama2_state_dict[key.replace("feed_forward.w3", "mlp.up_proj")] = value else: llama2_state_dict[key] = value weights_name = SAFE_WEIGHTS_NAME if save_safetensors else WEIGHTS_NAME shards, index = shard_checkpoint(llama2_state_dict, max_shard_size=shard_size, weights_name=weights_name) for shard_file, shard in tqdm(shards.items(), desc="Save weights"): if save_safetensors: save_file(shard, os.path.join(output_dir, shard_file), metadata={"format": "pt"}) else: torch.save(shard, os.path.join(output_dir, shard_file)) if index is None: print("Model weights saved in {}".format(os.path.join(output_dir, WEIGHTS_NAME))) else: index_name = SAFE_WEIGHTS_INDEX_NAME if save_safetensors else WEIGHTS_INDEX_NAME with open(os.path.join(output_dir, index_name), "w", encoding="utf-8") as f: json.dump(index, f, indent=2, sort_keys=True) print("Model weights saved in {}".format(output_dir)) def save_config( input_dir: str, output_dir: str ): with open(os.path.join(input_dir, CONFIG_NAME), "r", encoding="utf-8") as f: llama2_config_dict: Dict[str, Any] = json.load(f) llama2_config_dict["architectures"] = ["LlamaForCausalLM"] llama2_config_dict.pop("auto_map", None) llama2_config_dict.pop("bias", None) llama2_config_dict.pop("rope_scaling", None) llama2_config_dict["model_type"] = "llama" with open(os.path.join(output_dir, CONFIG_NAME), "w", encoding="utf-8") as f: json.dump(llama2_config_dict, f, indent=2) print("Model config saved in {}".format(os.path.join(output_dir, CONFIG_NAME))) def llamafy_internlm2( input_dir: str, output_dir: str, shard_size: str, save_safetensors: Optional[bool] = False ): try: os.makedirs(output_dir, exist_ok=False) except Exception as e: raise print("Output dir already exists", e) save_weight(input_dir, output_dir, shard_size, save_safetensors) save_config(input_dir, output_dir) if __name__ == "__main__": fire.Fire(llamafy_internlm2)